Дискурс, разворачиваемый в арифметике, оказывается значительно сложнее алгебраического. Здесь можно выделить три типа конструируемых объектов. Прежде всего, арифметика всегда подразумевает некоторую пространственную структуру, на которую можно непосредственно указать, описывая любую арифметическую операцию. Арифметическое утверждение также можно разложить на выделенные нами ранее части, указывая при этом в экспозиции на единичный протяженный объект, создаваемый согласно заданному правилу. В знаменитом кантовском примере - о суммировании чисел пять и семь - мы можем построить соответственно пять и семь точек или пять и семь последовательных отрезков на числовой прямой (и даже положить рядом пять и семь яблок). С помощью пространственных конструкций мы можем демонстрировать сложение, вычитание, деление, умножение, вводить отрицательные, дробные и даже иррациональные числа. (См. примечание 1) Но каждая такая операция, представляющая собой актуализацию определенного арифметического понятия, предполагает также и именование конструируемых объектов. Пользуясь определенной системой счисления, мы присваиваем протяженным конструкциям имена, являющиеся названиями чисел. Но пользуясь такими именами вкупе с названиями операций, мы производим конструкции совершенно иного рода. Мы создаем, прежде всего, сами числа, сообразуясь с правилами, заданными системой счисления. Мы создаем выражения, содержащие эти числа, и даже длинные тексты, включающие подчас весьма специфические конфигурации. В этом конструировании мы можем продвигаться достаточно далеко, вовсе не обращаясь к соответствующей протяженной конструкции, а используя наглядные представления совершенно иного вида.
Многие авторы (см., например, [64], [80], [83]) говорят об абстрактности арифметики, имея в виду отвлечение от протяженных конфигураций и их особенных признаков при определении числовых операций. Однако, важно иметь в виду, что в арифметическом дискурсе происходит конструирование совершенно конкретного единичного объекта. Несмотря на то, что правила этого конструирования существенно отличаются от геометрических, работа всех трех способностей субъекта остается той же самой. При рассмотрении любого арифметического утверждения воображение строит объект, согласно правилам, предписанным рассудком, а проведение достаточно сложного вычисления требует и обобщающей догадки (т.е. дополнительного построения), которая делается способностью суждения. (См. примечание 2)
Однако арифметический дискурс включает и именование иного рода, нежели обозначение протяженных конструкций с помощью чисел и числовых операций. Очень часто при формулировке каких-либо утверждений о числах пользуются буквенными обозначениями. В таком случае, вместо единичного объекта, который следовало бы предъявить при экспозиции, возникает знаковая конструкция, являющаяся именем того объекта, о котором идет речь. Здесь возникает несколько странных особенностей. С одной стороны знаковая конструкция в арифметике замещает не один, а множество подобных числовых объектов. Она носит общий характер, причем эту общность следует понимать не как общность абстракции, а как общность структуры. Если, например, вместо нечетного числа мы пишем '2n+1', то вводим принцип порождения всех объектов, соответствующих заданному общему понятию. С другой стороны, вводя имена, мы пользуемся ими и построенными из них выражениями как единичными объектами. Работая с именами, мы производим пространственно определенные конструкции, создаваемые воображением и представимые в созерцании. Сам способ введения этих имен полностью соответствует экспозиции в геометрической теореме. Так, сформулировав общее утверждение о свойствах целых чисел, мы, переходя к его доказательству, произносим: "Пусть n целое число, тогда" и т.д. Дальнейший дискурс вообще ничем не отличается от алгебраического. Однако при доказательстве алгебраической теоремы конструируется объект того же вида, что и любой другой, для которого справедлива теорема. Разумеется, вместо a0+a1 z+....+an zn можно написать b0+b1 x....+bm xm , но ничего принципиально иного здесь появиться не может. Точно так же при доказательстве геометрической теоремы мы могли использовать остроугольный треугольник и считать потом, что она справедлива также и для тупоугольного. В арифметике же буквенные выражения есть имена числовых (или даже протяженных) объектов, которые, однако, вообще не конструируются в дискурсе. Конструируется совершенно не тот объект, о котором ведется рассуждение. "Тот" объект, конечно же может быть в любой момент предъявлен, но в дискурсе он не присутствует.
Читать дальше