То же следует сказать и о геометрии синтетической, проективной, аффинной, конформной и т.п.
В проективной геометрии, например, рассматриваются не отдельные фигуры, но их закономерная и непрерывная связь, позволяющая рассматривать свойства одной фигуры как проективное преобразование другой, т.е. логическую зависимость определения одной фигуры через тождественное преобразование определенности другой. (Условия этого тождественного преобразования формулируются в аксиоматике: при проективных преобразованиях остаются тождественными отношения инцидентности точки и прямой, касания прямой и какой-либо линии, ангармоническое отношение четырех точек или четырех прямых и т.п., но существенно искажаются соотношения метрические; при конформных преобразованиях остаются инвариантными углы между любыми линиями; в топологии рассматриваются свойства, остающиеся инвариантными при всех изменениях фигуры, за исключением тех, которые приводят к ее «разрыву» или «растяжению».)
В целях сохранения непрерывности связи и выводимости одних фигур из других Понселе вводит в проективную геометрию широко применяемый в современной математике метод «идеальных элементов», например «бесконечно удаленной точки», которая с точки зрения созерцания совершенно бессмысленна. Тем не менее, как элемент связи преобразования такое понятие является истинным.
В проективной геометрии отдельная фигура рассматривается не сама по себе, но лишь как элемент, основные соотношения определенности которого строго фиксированы и из которого путем известных преобразований этих соотношений мы можем получить все многообразие других геометрических фигур как модификацию или трансформацию исходной определенности, а именно как непрерывное преобразование элементов, в которых выражается ее положение. Изменение этих элементов дает нам ряд пространственных образов, индивидуально различных и в то же время генетически связанных. Известные же соотношения которые были указаны выше, остаются инвариантными для всей системы в целом. Они-то и являются критерием проективного преобразования.
Инварианты непрерывного преобразования являются свойством не отдельной фигуры, а именно систематически рассматриваемой их совокупности. Ряд метаморфоз, которые претерпевает фигура при ее проективных преобразованиях, приводит в конце концов к такому образу, в котором трудно или совершенно невозможно усмотреть первоначальный образ, и тем не менее фигура, элементы которой установлены в аксиоматике, остается в своей определенности тождественной самой себе. Это и дает возможность за индивидуальной формой данной фигуры рассмотреть ее геометрическую сущность.
Математический генезис превращенной формы, разумеется, будет иметь только тот специфически логический смысл, о котором говорилось выше. Если некоторую фигуру, имеющую форму эллипса, мы рассматриваем как результат проективного преобразования круга, то это вовсе не значит, что в своем реальном генезисе объекты, имеющие форму эллипса, возникают из вида, имеющего форму круга.
Принцип анализа взаимных отношений геометрических объектов развивается и далее, и уже не только применительно к отдельным геометрическим фигурам в рамках той или иной (Евклидовой или неевклидовой) геометрии, но и применительно к самим отдельным геометриям и позволяет решать не только вопрос о свойствах отдельной геометрической фигуры, скажем, в Евклидовом пространстве, но и о месте самого Евклидова пространства в некотором обобщенном пространстве, например в геометрии Клейна или Римана.
Здесь становится совершенно ясным различие между геометрией как математикой и геометрией как физикой. В самом деле, если мы рассматриваем геометрию Евклида или Лобачевского как частные случаи геометрии Римана и если мы придаем их понятиям некоторый абсолютный физический смысл, например, трехмерности этих пространств, то говорить о месте трехмерного пространства в бесконечномерном пространстве Римана физически бессмысленно, хотя математически это имеет определенный и глубокий смысл. Трехмерное пространство не существует «в» бесконечномерном; относительно любого физического объекта мы можем сказать, что он существует только в трехмерном или, в крайнем случае, четырехмерном «пространстве-времени» Эйнштейна – Минковского, но никак не в бесконечномерном. О математическом же смысле такого существования стоит говорить.
Читать дальше