Л. Науменко - Монизм как принцип диалектической логики

Здесь есть возможность читать онлайн «Л. Науменко - Монизм как принцип диалектической логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1968, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Монизм как принцип диалектической логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Монизм как принцип диалектической логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Монизм как принцип диалектической логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Монизм как принцип диалектической логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Всякий геометрический объект определяется относительно некоторой однородной среды, закономерности которой, повсюду одинаковые, обусловливают свойства конкретного объекта, рассматриваемого в ней. Так, мы убеждены, что все геометрические фигуры суть некоторым образом «одно и то же», что они внутренне тождественны. Только при этом условии и возможно строго математическое познание.

Историческое развитие геометрии состояло в том, что это убеждение все более и более овладевало умами геометров.

Для геометрии древних характерно самостоятельное рассмотрение геометрических фигур сообразно особенностям их индивидуальной наглядной определенности. Так, например, круг и эллипс с точки зрения непосредственного созерцания представляются сущностями различных порядков, поэтому определение свойств каждой из них осуществлялось индивидуально. Отдельная фигура рассматривалась как самодовлеющая единица. Разумеется, между кругом и эллипсом можно подметить некоторое внешнее сходство, однако оно не касается существа.

Методы аналитической геометрии Декарта и современной дифференциальной геометрии, теории групп или проективной геометрии позволяют установить единый метод непрерывного преобразования любой самой сложной фигуры в другую. То, что в геометрии древних решается путем сложных и разрозненных операций, аналитическая геометрия разрешает более простым и единообразным способом. Так, например, теория конических сечений была построена еще Аполлонием Пергским (265-217 гг. до н.э.), но его изложение имело чрезвычайно сложную форму. То, что у Аполлония распадается на восемьдесят отдельных операций, сопровождаемых построением отдельных элементарных фигур, аналитическая геометрия решает путем немногих простых операций. Все конические сечения выражаются в декартовых координатах уравнениями 2-й степени, и построение их теории было сведено к исследованию таких уравнений [142] См.: Норден А.П . Элементарное введение в геометрию Лобачевского, с. 218. .

Аналитическая геометрия Декарта позволяет свести сложное дискретное многообразие индивидуальных синтетических фигур, кривых и т.п. к числовому единообразию их аналитического выражения в координатной системе, к некоторому непрерывному числовому ряду с едиными, однородными закономерностями. В этой системе индивид уже не представляется самодовлеющей единицей познания. Наоборот, всякая индивидуальная определенность есть продукт известного состояния некоторой универсальной среды, между индивидами поэтому нет такого различия, которое бросается в глаза при их синтетическом исследовании, т.е. в непосредственном созерцании. Различия между отдельными геометрическими образами здесь находятся не «наряду» с определенными тождественными чертами, но вытекают из их тождественной сущности в соответствии с законами геометрии.

При дедуктивном построении геометрии мышление исходит не из отдельных геометрических объектов, но из одной и непрерывной закономерности, которая и определяет индивидуумы в их особенностях, из некоторого единого метода построения всей совокупности объектов. Изолированные пространственные формы, «образы», которые в своей индивидуальности даже боготворились греками, рассматривавшими их как некоторые индивидуальные сущности, «эйдосы» (треугольник, сфера и т.п. или тройка, семерка у пифагорейцев), были развенчаны и сведены к ряду некоторых простейших и всеобщих соотношений.

Любая геометрическая фигура рассматривается в аналитической геометрии как организованное множество точек, каждая из которых согласно координатному методу определена ее расстоянием от осей координат. Это расстояние подчиняется некоторому числовому закону. Но расстояние есть нечто такое, в чем данная фигура уже не существует в форме своей исключительной, индивидуальной определенности.

Расстояние, взятое в его числовом выражении, есть ее «плебейская», рядовая сущность. Эта ее сущность и раскрывается аналитическим методом. Особенности фигуры, синтетически представляющиеся неразложимыми, при аналитическом методе сводятся к ординарным особенностям числового ряда. Это и позволяет единообразно рассмотреть все царство индивидуальностей. Введение в геометрию дифференциальных методов еще более расширило ее возможности в этом направлении.

Первым успехом дифференциальной геометрии было создание (XVIII в.) работами Эйлера, Лагранжа и Монжа теории кривых линий и основы теорий поверхностей. В этих работах дифференциальная геометрия еще не рассматривалась, однако как самостоятельная дисциплина она представляла собой приложение анализа к геометрии. Выход в свет в 1827 г. сочинения К.Ф. Гаусса «Рассуждение о кривых поверхностях» положил начало существованию дифференциальной геометрии как самостоятельной дисциплины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Монизм как принцип диалектической логики»

Представляем Вашему вниманию похожие книги на «Монизм как принцип диалектической логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Константин Циолковский
Евгений Каштанов - Превалированный монизм
Евгений Каштанов
Отзывы о книге «Монизм как принцип диалектической логики»

Обсуждение, отзывы о книге «Монизм как принцип диалектической логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x