Жиль Делёз - Складка. Лейбниц и барокко

Здесь есть возможность читать онлайн «Жиль Делёз - Складка. Лейбниц и барокко» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1998, ISBN: 1998, Издательство: Логос, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Складка. Лейбниц и барокко: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Складка. Лейбниц и барокко»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Похоже, наиболее эффективным чтение этой книги окажется для математиков, особенно специалистов по топологии. Книга перенасыщена математическими аллюзиями и многочисленными вариациями на тему пространственных преобразований. Можно без особых натяжек сказать, что книга Делеза посвящена барочной математике, а именно дифференциальному исчислению, которое изобрел Лейбниц. Именно лейбницевский, а никак не ньютоновский, вариант исчисления бесконечно малых проникнут совершенно особым барочным духом. Барокко толкуется Делезом как некая оперативная функция, или характерная черта, состоящая в беспрестанном производстве складок, в их нагромождении, разрастании, трансформации, в их устремленности в бесконечность. Образуемая таким образом бесконечная складка (сразу напрашивается образ разросшейся до гигантских размеров коры головного мозга) имеет как бы две стороны или два этажа — складки материи и сгибы в душе. Тяжелые массы материальных складок громоздятся под действием внешних сил, а затем организуются в стройную систему согласно внутренним изгибам души. Декарт использовал совершенно иной принцип монтажа: для него материя характеризуется прямолинейной протяженностью, а душа — "прямизной", выправляющей любые душевные "наклонности".

Складка. Лейбниц и барокко — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Складка. Лейбниц и барокко», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

{29}

Трансформации второго рода — проективные: в них выражается проекция на внешнее пространство пространств внутренних, определяемых «скрытыми параметрами» и переменными величинами, или потенциальными сингулярностями. В этом смысле трансформации Тома открывают морфологию живого на основе семи элементарных событий-катастроф: складки, сборки, «ласточкина хвоста», «бабочки», а также омбилических точек: гиперболической, эллиптической и параболической. 4

Наконец, инфлексия сама по себе неотделима от бесконечного варьирования или от бесконечно переменной кривизны. Закругляя углы сообразно требованиям барокко и приумножая их по закону гомотетии (подобия), мы получаем кривую Коха, которая проходит через бесконечное количество угловатых точек и ни в одной из этих точек не допускает касательной; служит оболочкой бесконечно губчатого или полостного мира; образует более чем одну линию и менее чем одну поверхность (фрактальное измерение Мандельброта, выражаемое дробным или иррациональным числом; нон-измерение; промежуточное измерение). 5Вдобавок, гомотетия способствует совпадению вариации с переменой масштаба, как в случае с длиной берега в географии. Как только мы вмешиваем в дело флуктуацию, а не внутреннюю гомотетию, все меняется. Мы получаем уже не возможность определять угловатую точку между двумя другими, сколь бы близкими те ни были, — а свободу где угодно добавлять поворот, превращая всякий промежуток в место новой складчатости. Как раз здесь мы и переходим от сгиба к сгибу, а не от

точки к точке, а все контуры расплываются, создавая

4О связи теории катастроф с органическим морфогенезом, ср. Rene Thom. Morphologie et I'imaginaire, Circe, 8–9 (и изложение семи сингулярностей, или катастроф-событий, р. 130).

5Mandelbrot, Les objets fractals, Flammarion (о губчатом или полостном см. цитируемый М. текст Жана Перрена, р. 4–9). Мандельброт и Том с разных точек зрения имели мощные инспирации в духе Лейбница.

{30}

разнообразные формальные потенции материала, выходящие на поверхность и проявляющиеся в виде соответствующего количества поворотов и дополнительных сгибов. Трансформация инфлексии не допускает ни симметрии, ни привилегированного плана проекции. Инфлексия становится вихреобразной и происходит не столько благодаря продлению или приумножению, сколько через запоздание и промедление: по сути, линия закручивается в спираль, чтобы отсрочить инфлексию, произведя ее в движении, «подвешенном между небом и землей»; эта спираль неопределенным образом то удаляется от центра кривой, то приближается к нему, и в каждый миг «либо взлетает, либо рискует обрушиться на нас». 6Но вертикальная спираль задерживает и отсрочивает инфлексию не иначе, как обещая ее и делая ее неодолимой на какой-нибудь трансверсали: турбулентность никогда не бывает единственной, а ее спираль имеет фрактальное строение, сообразно чему между первичными турбулентностями всегда вставляются новые. 7Это и есть турбулентность, подпитывающаяся другими турбулентностями и — при стирании контура — завершающаяся не иначе, как чем-то вроде буруна или конской гривы. Здесь сама инфлексия становится вихреобразной, и в тоже время ее вариации открываются навстречу флуктуациям, сами становятся флуктуациями.

Определение барочной математики дается у Лейбница: объектом последней становится «новое влечение» переменных величин, т. е. сама вариация. По существу, ни в дробных числах, ни даже в алгебраических формулах не подразумевается вариативность как таковая, ибо каждый из их членов имеет или должен иметь определенное значение. По-иному дела обстоят с иррациональными числами и соответствующим им исчислени-

6Окенгем и Шерер этими словами — на материале статуи Пермоцера «Апофеоз принца Евгения» (1718–1721)

— описывают барочную спираль: L'ame atomique, Albin Michel.

7От сгиба к турбулентности, ср. Мандельброт, гл. 8, а также Каш, настойчиво выделяющий явления отсрочки.

{31}

ем рядов, а также с дифференциальными остатками и с исчислением остатков, где вариативность становится актуально бесконечной, поскольку иррациональное число является общим пределом двух конвергентных серий, из которых одна не имеет максимума, а другая — минимума; дифференциальный же остаток служит общим пределом исчезающего отношения между двумя величинами. Однако в обоих случаях можно заметить присутствие элемента искривленности, оказывающее причинное воздействие. Иррациональное число имплицирует опускание дуги окружности на прямую рациональных чисел и изобличает ее как ложную бесконечность, попросту как неопределенность, содержащую бесконечное множество лакун; поэтому континуум представляет собой лабиринт и не может быть выражен через прямую линию — прямая всегда будет перемежаться участками искривленности. Сколь бы близки ни были две точки А и В, между ними всегда возможно построить прямоугольный равнобедренный треугольник, чья гипотенуза пойдет от А к В, а вершина С укажет на окружность, которая пересечет прямую между А и В. Дуга окружности окажется чем-то подобным ветви инфлексии, элементом лабиринта, который на пересечении кривой и прямой превратит иррациональное число в точку-сгиб. Так же обстоят дела и с дифференциальным остатком, где имеется точка-сгиб А, сохраняющая отношение с/е, когда последние две величины становятся исчезающими (это также отношение между радиусом и касательной, соответствующее углу в точке С). 8Короче говоря, всегда имеется некая инфлексия, превращающая вариацию в сгиб и устремляющая сгиб или вариацию к бесконечности. Сгиб есть степень и потенция, — как мы видим это в иррациональном числе, получаемом при извлечении корня, а также в дифференциальном остатке, выводимом из отношения каких-либо величины и степени; это и является условием ва-

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Складка. Лейбниц и барокко»

Представляем Вашему вниманию похожие книги на «Складка. Лейбниц и барокко» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Складка. Лейбниц и барокко»

Обсуждение, отзывы о книге «Складка. Лейбниц и барокко» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x