Георгий Рузавин - Логика и аргументация - Учебн. пособие для вузов.

Здесь есть возможность читать онлайн «Георгий Рузавин - Логика и аргументация - Учебн. пособие для вузов.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1997, ISBN: 1997, Издательство: Культура и спорт, ЮНИТИ, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика и аргументация: Учебн. пособие для вузов.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика и аргументация: Учебн. пособие для вузов.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Это первая в отечественной литературе попытка рассмотреть законы и принципы логики в тесной связи с аргументацией, используемой в практических и научных рассуждениях.
Основное внимание обращается на диалог как на ту реальную среду, в рамках которой происходят споры, дискуссии, диспуты и полемики. Изложение логических вопросов подчинено целям выработки навыков критического мышления в процессе аргументации.
Для студентов гуманитарных вузов, а также широкого круга лиц, желающих овладеть навыками аргументации как искусства рационального убеждения.

Логика и аргументация: Учебн. пособие для вузов. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика и аргументация: Учебн. пособие для вузов.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если из противоречия следует все что угодно те истина или ложь то и - фото 15

Если из противоречия следует все, что угодно, т.е. "истина" или "ложь", то и тавтология следует из любого истинного или ложного высказывания. В самом деле, если в каждой строке таблицы заключение всегда будет истинным, то по правилу импликации оно может быть получено как из истинных, так и из ложных посылок. Напротив, никогда ложное следствие (противоречие) не может быть получено из истинных посылок.

Промежуточное положение между всегда истинными высказываниями (тавтологиями), с одной стороны, и всегда ложными (противоречивыми) высказываниями, с другой, занимают фактуальные утверждения. Их заключения могут быть как истинными, так и ложными, в зависимости от тех фактов, на которые опираются их посылки. В то время как истинность тавтологий или ложность противоречий может быть установлена чисто логическим анализом этих высказываний, значение истинности фактуальных высказываний требует обращения к действительным фактам. Другими словами, чтобы установить истинность или ложность фактуальных высказываний, необходимо исследовать реальные связи и отношения действительности, которые отображаются в соответствующих высказываниях, служащих посылками фактуальных заключений. На этом основании фактуальные высказывания часто называют также эмпирическими в противоположность аналитическим высказываниям логики и чистой математики. Но это противопоставление имеет относительный характер, ибо и в научных, и в повседневных рассуждениях аналитические высказывания логики применяются вместе с эмпирическими утверждениями, поскольку именно из эмпирических законов мы выводим логические заключения.

Всю новую информацию в науке формулируют с помощью эмпирических (фактуальных) высказываний, а выводы из нее получают с помощью законов (правил) логического следования.

3.6. Доказуемость и выводимость

До сих пор при определении истинности или ложности сложных высказываний, состоящих из простых, мы опирались на таблицы истинности. Но этот способ неудобен, громоздок, особенно когда приходится иметь дело с большим числом простых высказываний. Напомним, что при двух простых высказываниях таблица истинности содержит четыре строки, при трех - восемь, а для 12 высказываний потребовалось бы уже 4096 строк. Вот почему в логике наряду с табличным методом часто используют метод, опирающийся на вывод и доказательство одних высказываний из других.

По своей сути этот метод весьма похож на метод доказательства теорем, который известен из школьной геометрии. Доказательство там сводилось к логическому выводу теорем из аксиом, а также из ранее доказанных теорем, которые принимались в качестве истинных утверждений геометрии. В конечном итоге всякое доказательство сводится к логическому выводу теорем из аксиом, так как ранее доказанные теоремы также можно логически вывести из аксиом. Таким образом, отличие доказательства от логического вывода состоит в том, что при доказательстве мы принимаем посылки в качестве истинных высказываний, а при логическом выводе - в качестве допущений или гипотез. Отсюда становится ясным различие между истинностью и правильностью рассуждения или мышления, о котором шла речь в гл. 1. Истинность утверждения предполагает, во-первых, истинность посылок, из которых оно выводится, и, во-вторых, правильность логического вывода. Вывод может быть сделан из любых допущений, в том числе из ложных.

Хотя процесс доказательства в логике аналогичен доказательствам в математике, но между ними есть и существенное различие; оно заключается в том, что в математике мы имеем дело со специфическими математическими объектами - числами, фигурами, функциями и т.п., а в логике - с высказываниями, т.е. с логическими объектами. Чтобы отличить объекты разного уровня, для представления высказываний в математике используется предметный язык, а для анализа предметного языка - метаязык, на котором формулирует свои утверждения исследователь. Проще говоря, чтобы рассуждать об объектах предметного языка, необходим метаязык, выступающий в качестве языка второго уровня. Это обстоятельство следует всегда иметь в виду в дальнейшем.

Чтобы построить доказательство высказывания или формулы в исчислении высказываний, необходимо:

1) указать те аксиомы или недоказуемые формулы, из которых выводятся все доказуемые формулы или теоремы;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика и аргументация: Учебн. пособие для вузов.»

Представляем Вашему вниманию похожие книги на «Логика и аргументация: Учебн. пособие для вузов.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Логика и аргументация: Учебн. пособие для вузов.»

Обсуждение, отзывы о книге «Логика и аргументация: Учебн. пособие для вузов.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x