Вместе с тем увеличение шага оптимизации имеет и свои плюсы. Несмотря на сдвиг в координатах глобального максимума и ухудшение находимых решений, новая оптимальная область по-прежнему остается приблизительно в том же районе оптимизационного пространства, что и при более детальной проработке. При этом само пространство получается более гладким. Преимущество сглаживания заключается в том, что большинство незначительных локальных экстремумов исчезает из оптимизационного пространства. В результате уменьшается вероятность того, что процесс оптимизации (использующий более экономные способы поиска оптимального решения, чем метод полного перебора) остановится на локальном максимуме.
Следовательно, увеличение шага оптимизации, с одной стороны, уменьшает шанс того, что максимум целевой функции, попадет в исследуемое оптимизационное пространство, но, с другой стороны, снижает количество вычислений и повышает эффективность поиска за счет устранения незначительных локальных экстремумов.
2.3. Целевые функции и их применение для базовой дельта-нейтральной стратегии
С помощью целевой функции мы оцениваем и сравниваем между собой меру полезности различных комбинаций параметров. Поэтому выбор целевой функции является одним из ключевых элементов, во многом определяющим эффективность оптимизации. Каждая функция создает оптимизационное пространство, имеющее свои характерные особенности. Оптимизационные пространства разных функций полезности могут быть достаточно близкими по своей форме, а могут существенно отличаться друг от друга. В этой главе мы рассмотрим различные функции полезности, создающие как похожие, так и весьма далекие по форме пространства.
В большинстве случаев невозможно ограничиться одной функцией полезности. Обычно приходиться использовать не менее трех-четырех функций одновременно. Иногда их количество бывает гораздо большим (до 10 и даже более). Использование большого количества целевых функций особенно актуально для оптимизации опционных торговых стратегий, поскольку в этом случае приходится оценивать не только стандартные параметры доходности и риска, но также особые характеристики, специфичные для опционов. В главе 1 мы рассматривали множество таких функций, когда говорили о характеристиках опционных портфелей. Увеличение количества целевых функций приводит к необходимости разработки специальных методик многокритериального анализа. Значительная часть материала текущей главы будет посвящена этому непростому вопросу.
2.3.1. Оптимизационные пространства различных целевых функций
При оптимизации большинства автоматизированных торговых систем основной целевой функцией является прибыль (этот показатель может иметь разные формы выражения – в процентах или абсолютных цифрах, в годовом эквиваленте или с привязкой к операционному циклу системы). Все примеры, рассмотренные нами ранее в этой главе, основывались именно на этой целевой функции. Левый верхний график рис. 2.3.1 воспроизводит оптимизационное пространство, построенное на основании этой базовой функции. Теперь мы рассмотрим, насколько выбор других целевых функций влияет на форму оптимизационной поверхности тех же параметров.
При использовании в качестве целевой функции коэффициента Шарпа (правый верхний график рис. 2.3.1) форма поверхности выглядит почти так же, как и для функции «прибыль» (за исключением мелких, незначительных расхождений). Наибольшая по площади оптимальная область располагается приблизительно в одном и том же месте и имеет похожую форму. Глобальный максимум имеет почти те же координаты, что и для целевой функции «прибыль». Единственное отличие состоит в том, что координата по вертикальной оси составляет 100 дней для функции «коэффициент Шарпа» вместо 105 дней для прибыли (это незначительное отличие вряд ли имеет какое-либо принципиальное значение). Следует также отметить, что данная оптимизационная поверхность полимодальна, поскольку имеет еще несколько оптимальных областей, содержащих локальные максимумы. Однако в силу того, что эти области очень невелики по площади, с точки зрения робастности они явно уступают области глобального максимума.
Следующая функция полезности, максимальная просадка – представляет собой общепризнанный показатель риска торговых стратегий. Оптимизационное пространство, соответствующее этой функции, показано на правом нижнем графике рис. 2.3.1. В отличие от других показателей оптимизация максимальной просадки требует нахождения минимума, а не максимума функции полезности. Поэтому оптимальными являются те области поверхности, которые имеют низкие высотные отметки. В отличие от коэффициента Шарпа оптимизационное пространство данного показателя полностью отличается от пространства, соответствующего целевой функции «прибыль». Оптимальные области располагаются в двух направлениях: (1) в первой половине диапазона значений параметра «количество дней до экспирации» при условии, что параметр «горизонт истории для расчета IV» имеет низкие значения (вдоль горизонтальной оси); (2) в широком диапазоне значений параметра «горизонт истории для расчета IV» при условии, что параметр «количество дней до экспирации» имеет низкие значения (вдоль вертикальной оси). В этих же местах были отмечены оптимальные зоны (хоть и значительно меньших размеров) для функции «коэффициента Шарпа». Это объясняется тем, что коэффициент Шарпа «содержит в себе» информацию о риске (стандартное отклонение в знаменателе формулы). Поскольку максимальная просадка является экстремальным «выбросом» доходностей, то она влияет самым непосредственным образом на стандартное отклонение и опосредовано на коэффициент Шарпа.
Читать дальше
Конец ознакомительного отрывка
Купить книгу