Кроме того, диапазон допустимых значений не должен обязательно начинаться с наименьших возможных значений параметра, как это было сделано в предыдущих примерах (рис. 2.2.2 и 2.2.3, левый график). Допустим, что разработчик создает стратегию, работающую с более долгосрочными опционами. В этом случае он может задать нижнюю границу на диапазон допустимых значений параметра «число дней до экспирации». Допустим – это будет 60 дней (пусть верхняя граница остается без изменений). Изменение в диапазоне этого параметра потребует внесения изменений и в диапазон второго параметра, поскольку при торговле долгосрочными опционами неразумно оценивать их с помощью критерия, рассчитываемого на основании волатильности, оцененной на более коротком периоде, чем период обращения самих опционов. Следовательно, диапазон значений параметра «период истории для расчета HV» должен быть также ограничен снизу 60 днями (для того чтобы количество значений каждого параметра в пределах допустимого диапазона было одинаковым, верхнюю границу ограничим значением 210).
Рассмотрим оптимизационную поверхность, полученную для новых диапазонов допустимых значений параметров (правый график рис. 2.2.3). Совершенно очевидно, что в этом случае результаты оптимизации будут другими. Глобальный максимум теперь имеет другие координаты – 106 по горизонтальной оси и 145 по вертикальной. В том случае, когда рассматривалось более широкое пространство, этот узел являлся локальным максимумом. Теперь же, когда более высокий экстремум остался за рамками рассмотрения, локальный максимум превратился в глобальный. Значение целевой функции в этом узле составляет 4,1 % (ниже глобального максимума более широкого пространства, 7,1 %).
Таким образом, можно сделать вывод, что диапазон значений параметров влияет на форму оптимизационного пространства и в значительной степени определяет выбор окончательного оптимального решения. В целом, чем больше область допустимых значений параметров, тем больше шанс, что максимум целевой функции попадет в исследуемое оптимизационное пространство. Однако при этом уменьшается шанс найти этот максимум в процессе оптимизации , поскольку, во-первых, возникает необходимость проверять большее количество узлов и, во-вторых, из-за сложности поверхности возрастает риск «застрять» на локальных максимумах.
Шаг оптимизации не оказывает определяющего влияния на общую форму оптимизационного пространства, однако он влияет самым прямым образом на глубину его проработки. Чем шире шаг, тем больше деталей рельефа оптимизационного пространства может быть упущено в процессе оптимизации. Например, из-за слишком широкого шага оптимизации можно вовсе не обнаружить узкий пик функции полезности. Следовательно, при увеличении шага объем информации о целевой функции уменьшается.
Для рассматривавшейся ранее оптимизационной поверхности (рис. 2.2.2) использовался шаг два дня (для параметра «число дней до экспирации») и пять дней (для параметра «период истории для расчета HV»). Теперь мы увеличим эти значения – до четырех и 10 дней соответственно – и посмотрим какой эффект это окажет на информативность пространства. Левый график рис. 2.2.4 демонстрирует поверхность, полученную в результате увеличения шага. Сравнивая эту поверхность с рис. 2.2.2, мы видим, что, несмотря на уменьшение деталей, область глобального максимума сохранилась. Ранее узел глобального максимума имел координаты 30 по горизонтальной оси и 105 по вертикальной, теперь глобальный максимум имеет координаты 30 и 100. Хотя узел, имевший самое высокое значение целевой функции (7,1 %) исчез, его место в качестве глобального максимума занял соседний узел, целевая функция которого имеет весьма близкое значение (7 %).
Продолжим процедуру укрупнения шага, увеличив его значения до шести дней для параметра «число дней до экспирации» и 15 дней для параметра «период истории для расчета HV». Количество деталей рельефа уменьшилось еще больше (правый график рис. 2.2.4). Кроме того, полностью исчезла прежняя оптимальная область, располагавшаяся ранее вдоль 30-й вертикали и содержавшая узел глобального максимума. Новый глобальный максимум теперь имеет координаты 32 и 125, а значение новой целевой функция деградирует до 5,5 %. Отсюда следует вывод, что по мере укрупнения шага оптимизации происходит ухудшение находимых оптимальных решений .
Читать дальше
Конец ознакомительного отрывка
Купить книгу