Формально годом её рождения считается 1948.
Именно тогда появилось известное сочинение Норберта Винера «Кибернетика: Или Контроль и Коммуникация у Животных и Машин» (далее – просто «Кибернетика»).
Однако фактически работы, посвященные рассмотрению сложных систем как природных саморегулирующихся автоматов, за авторством Джона фон Неймана, самого Винера и других исследователей, публиковались с 1943 года. 57
Кратко обозначим контекст появления кибернетики.
После окончания Второй мировой войны в глазах общественности механическая парадигма оказалась чрезвычайно скомпрометированной.
Всем стало ясно, что от представлений о государствах-машинах, людях-машинах и прочих спекуляций в духе «социальных механизмов» надо отказываться.
Такие взгляды практически всюду были признаны доктринами, мягко говоря, неточно описывающими реальность.
На научном поприще механическая парадигма была плавно вытеснена цифровой парадигмой ещё раньше: фактически к началу 1930х гг.
В физике, к тому же, состоялось рождение группы ещё более сложных концепций, главной из которых стала квантовая механика.
Таким образом, все три крупных научных парадигмы, созданных людьми, в определённый момент времени сосуществовали как равноправные мейнстримные доктрины. Это сформировало уникальную атмосферу интересных научных дискуссий, в которые мы сейчас вникать не станем.
Физики одновременно радовались новым концепциям и не очень понимали, как их применять. Достаточно упомянуть, что великий Эйнштейн, создав теорию относительности, сбросил с пьедестала научного мейнстрима одну парадигму (механическую); используя понятие «квант» для объяснения фотоэффекта, утвердил другую парадигму (цифровую); активно критикуя исходную версию квантовой теории, в частности, соорудив с коллегами-физиками т.н. «парадокс Эйнштейна-Подольского-Розена», крайне подозрительно относился к третьей, новорождённой, парадигме (квантовой).
В биологии уже вовсю заправляли генетики. Славили Дарвина, Менделя.
Однако дискретные факторы наследственности, «гены», до поры до времени оставались гипотетическими объектами. Некоторые учёные, в связи с этим, даже склонялись в пользу более ранней теории биологической эволюции, ламаркизму.
После 1944 года все сомнения в правильности генной концепции исчезли: биологи Освальд Эвери, Колин Маклауд и Маклин Маккарти обнаружили молекулу дезоксирибонуклеиновой кислоты (ДНК).
Наконец, огромное значение для утверждения цифровой парадигмы имела практическая реализация математических идей Алана Тьюринга. Конструкторы взялись за сооружение первых цифровых компьютеров.
В 1941 году Конрад Цузе создал электромеханический вычислитель, а в конце 1945 года группа инженеров под руководством Джона Эккерта-мл. и Джона Моучли – уже в полном смысле электронное цифровое устройство, «ENIAC». 22
Дошла очередь и до живого мозга.
Отцами вычислительной модели следует считать математиков Джона фон Неймана и Норберта Винера.
Хотя без помощи специалистов (учёных-нейрофизиологов и даже просто врачей) не обошлось, основной вклад в модель «мозг-компьютер» принадлежит, конечно, им.
Об сложной коллаборации биологов и математиков свидетельствовал сам Винер.
В «Кибернетике» он рассказал о совещании, проходившем в начале 1944 года в знаменитом Принстонском Институте Перспективных Исследований, где «физиологи сделали совместное изложение задач кибернетики с их точки зрения, аналогичным образом конструкторы вычислительных машин изложили свои цели и методы». Среди «конструкторов вычислительных машин», т.е. математиков, Винер упоминал себя и Джона фон Неймана. 4
Джон фон Нейман – крупнейший учёный XX века.
Он оставил значительный след в физике: ему принадлежит строгая формулировка принципа неопределённости – базового тезиса квантовой теории.
Как активный участник Манхэттенского проекта, внёс существенный вклад в развитие атомной физики. Ставшей обширным полем научно-прикладной проработки идеи вычисляемой дискретности.
В дискуссии об основаниях математики фон Нейман принадлежал к лагерю «формалистов»: в ряде работ пытался обосновать точку зрения Гильберта о существовании абсолютных аксиом. Однако после фундаментальных результатов, полученных Гёделем и Тьюрингом, этот спор потерял смысл, и учёный быстро переключился на решение прикладных задач в теории алгоритмов.
Читать дальше