Далее, в соответствие с правилами Буля, надо произвести «логическое умножение». Получается истинное высказывание или основная версия: « Домашние» убийства совершаются домочадцами.
Ложные высказывания, т.е. другие версии ( не « домашние» убийства совершаются домочадцами; «домашние» убийства совершаются не домочадцами; не «домашние» убийства совершаются не домочадцами ), отбрасываются. (Заметим, что одно из этих ложных высказываний – «„домашние“ убийства совершаются не домочадцами» – по содержанию включает в себя версию, которую исследуют полицейские: «Бандиты совершают „домашние“ убийства». )
Выбранная Холмсом основная версия мысленно подкрепляется статистическим анализом (вероятность, стремящаяся к 100%), поэтому оговорка «чаще всего» в дедуктивной/бинарной логике устраняется.
Это необходимо для дальнейших вычислений, чтобы произвести «логическое сложение» основной версии с результатами исследования – уликами и свидетельствами. Которые тоже подчинены бинарной логике: «подтверждает основную версию» или « не подтверждает основную версию».
По сюжету рассказа общий баланс оказался в пользу «подтверждает», так что первоначальная гипотеза сыщика стала истиной.
Таким образом, Шерлок Холмс – дедуктивный автомат, перерабатывающий оформленные в бинарных оппозициях данные.
Приведенный пример абдуктивного рассуждения для расследования убийства в Эбби-Грейндж, на первый взгляд, выглядит громоздко в сравнении с методом Холмса.
Пусть вас это не смущает.
Не будем забывать, что речь идёт о художественном произведении. В то время как действительность полна нюансов и оттенков.
Реальные детективы начали бы с того же, что и Шерлок Холмс – исследовали бы наиболее вероятную в данных обстоятельствах версию. Но параллельно изучались бы и другие гипотезы (отсюда – это неуверенное «чаще всего»). Которые могли быть проверены как индуктивно, так и дедуктивно.
Однако, если б убийство в Эбби-Грейндж было совершено не домочадцами и не бандитами (т.е. произошёл нетипичный случай), реальные сыщики продолжили бы расследование и, рано или поздно, преуспели. А, вот, знаменитый детектив растерялся бы. Ведь тогда пришлось генерировать новые гипотезы: воображать, фантазировать. Чего он явно делать не любил.
Всё, что мы сказали о приёмах логического рассуждения, обобщено в таблице 6.
Мендель применил бинарную логику для подходящего в данном случае объекта: общая закономерность в передаче между поколениями основного и альтернативного признака. Бинарная кодировка действительно многое объясняет в механизме генетического наследования.
Холмс использовал бинарную логику для объяснения сложных объектов. Таких, как мотивы и поступки людей. В выдуманных литературных сюжетах это работает, а в реальной жизни нет. Что, судя по всему, отлично понимал и сам Конан Дойл, которому его персонаж довольно быстро наскучил.
Поэтому Грегор Мендель – умница, а Шерлок Холмс – тупица.
Несмотря на то, что на рубеже XIX и XX столетий научный авторитет механической парадигмы оставался на очень высоком уровне, идея вычисляемой дискретности постепенно и неотступно завоевывала своё место под солнцем.
Биологи «вдруг» обнаружили, что в описанных Грегором Менделем закономерностях есть полезный смысл, а образованная публика зачитывалась историями о приключениях Шерлока Холмса.
В физике, как мы обсуждали в предыдущей главе, одна за другой стали появляться корпускулярные модели атома; а Эйнштейн объяснил фотоэффект, исходя из дискретной природы света.
В математике у новой парадигмы была своя история.
Джордж Буль, попытавшись облечь законы мышления в математическую форму, указал на возможность вывода аксиом – общих истин, на которые впоследствии можно опереться при построении цепочки доказательств.
В подглаве о бинарной логике мы обозначили одну из таких аксиом: закон снятия двойного отрицания. В математике этот закон преобразуется в порядок доказательств, известный как «доказательство от противного».
Например, требуется доказать, что 17 – нечётное число.
Допустим, что 17 – чётное число (отрицание). По определению чётных чисел, 17 должно делиться на 2 без остатка. Выполнив деление, получаем остаток. Значит, 17 не является чётным числом (отрицание отрицания) и является нечётным числом (снятие двойного отрицания = истина).
Читать дальше