Это утверждение можно выразить иначе, на более привычном языке.
Например:
Можно построить логически непротиворечивую теорию, но нельзя доказать её истинность.
Тогда такое следствие:
Какими бы логичными ни казались, скажем, концепция души или рефлекторная теория мозга, нельзя сформулировать аргументы в пользу того, что они неопровержимо верны.
Или такая формулировка теоремы:
Выразить полностью какую-либо сложную научную теорию при помощи средств любого естественного языка невозможно.
И её следствие:
Если вы не разбираетесь в математике и не собираетесь этого делать, то в случае создания новой научной теории (например, Теории Всего) вы её никогда не поймёте.
Чтобы пояснить, почему формулировка и следствия теоремы Гёделя, выходят так далеко за пределы арифметики, разберёмся с терминами.
Все высказывания (как в математике, так и в любом естественном языке) могут быть неопределёнными и определёнными. О первых сказать, ложны они или истинны, нельзя. О вторых – можно.
Некоторой аналогией тут служит различие между открытыми и закрытыми вопросами. Если вам задают открытый вопрос (начинается с «как», «что такое», «почему» и т.п.), вы не можете содержательно и определённо ответить, сказав «да» или «нет». Однако при ответе на закрытый вопрос («так ли это?», «это случилось там-то?» и т.д.) только эти два варианта имеют смысл.
Таким образом, Гёдель заключил, что все аксиомы в математике – это определённые истинные высказывания (мы назовём их «первичными истинами»). А все, следующие из них высказывания, выраженные на каком-либо естественном языке, – определённые и истинные тоже («вторичные истины»).
Тогда формируются два множества: все «первичные истины» (множество с числом элементов n ) и все «вторичные истины» (множество с числом элементов m ).
Сформулированный Гёделем вопрос заключается в следующем: можно ли – всегда и во всех случаях – из «вторичной истины» вывести «первичную истину»?
Или так: содержатся ли в наших естественных языках уже все аксиомы, которые мы ещё не успели описать на языке математики?
Короче: существует ли такая формула (способ, правило), которая всегда выводит n из m ?
И совсем коротко: n = m ?
Курт Гёдель использовал доказательство от обратного и начал с предположения, что n = m . Примерная схема рассуждений представлена на рисунке 10.
Получилось, что всегда и строго n> m .
Итак, Гёдель доказал, что абсолютных, сформулированных людьми, истин не существует: ни в математике, ни, тем более, в естественных языках (интуиционисты удовлетворенно кивнули).
Вместе с тем, он ясно показал, что существует некий, возможно, универсальный процесс создания аксиом – как в математике, так и в естественных языках (формалисты продолжили верить).
Этот универсальный процесс создания аксиом – не что иное, как вычисление . (Джордж Буль думал также, однако именно Гёдель в подтверждение тезиса привел весомые аргументы.)
При этом вычисление может производиться любым, имеющим к этому процессу подходящие инструменты, созданием. В том числе – искусственным устройством.
Через пять лет после появления теоремы о неполноте арифметики Алан Тьюринг опубликовал статью, в которой описал то, что сейчас мы называем компьютером.
Нужно иметь в виду, что представленная в этой работе математическая метафора, «машина Тьюринга», не только и не столько абстрактная модель механического вычислительного устройства.
Это, прежде всего, модель вычислений, производимых человеком. В самом начале статьи читаем: «Мы можем сравнить человека в процессе вычисления (in the process of computing) какого-либо действительного числа с машиной, которая ограничена конечным числом состояний…». 63
Тьюринг математически описал биологического вычислителя (англ. computor). Точнее: детально изложил процесс арифметических вычислений так, как, по его мнению, это происходит, в общем, у обычного человека, взявшего в руки тетрадку в клеточку и карандаш для решения какой-либо задачки.
Человек вписывает в клеточки начальные символы или цифры; глядя на текущую клеточку, производит в уме элементарную операцию по их преобразованию (складывает, вычитает, умножает, делит); записывает полученный результат в соседнюю клеточку; продолжает последовательное вычисление в соответствие с порядком, который сам же наметил.
Иными словами, он, как сказал бы Гёдель, переводит первоначальное неопределённое высказывание в определённое, затем – в другое определённое и т. д.
Читать дальше