Денис Соломатин - Математические модели в естественнонаучном образовании. Том I

Здесь есть возможность читать онлайн «Денис Соломатин - Математические модели в естественнонаучном образовании. Том I» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Биология, Медицина, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические модели в естественнонаучном образовании. Том I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические модели в естественнонаучном образовании. Том I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические модели в естественнонаучном образовании. Том I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вопросы для самопроверки:

– Какой смысл могут иметь популяции, значения которых не являются целыми числами?

Если измерять размер популяции в единицах, таких как тысячи или миллионы особей, то нет никаких оснований для того, чтобы популяции были целыми числами. Для некоторых видов, таких как коммерчески ценные рыбы, может быть даже целесообразно использовать единицы массы или веса, такие как тонны.

Другая причина, по которой нецелочисленные значения популяции не вызывают опасения, даже если используем поштучные единицы измерения, заключается в том, что пытаемся лишь приблизительно описать размер популяции. Нет ожидания того, что модель даст точные прогнозы. Пока числа невелики, можно просто игнорировать дробные части без значительных потерь.

В таблице 1.5 видим, что популяционное значение увеличивается до пропускной способности 10, как и ожидалось. Сначала это увеличение кажется медленным, затем оно ускоряется, а затем снова замедляется. Построение значений популяции на рисунке 1.2 показывает сигмовидную картину, которая часто появляется в данных тщательно контролируемых лабораторных экспериментов, в которых популяции увеличиваются в ограниченной среде. График показывает значения популяции, связанные сегментами линий, чтобы сделать шаблон более ясным, хотя дискретные временные шаги нашей модели действительно дают популяции только в целочисленное время. Таким образом, с интуитивной точки зрения мы добились определенного прогресса; у нас есть более реалистичная модель для описания роста населения или численности выпускников физико-математических специальностей.

Рисунок 12 Популяционные значения из нелинейной модели Однако с - фото 242

Рисунок 1.2. Популяционные значения из нелинейной модели.

Однако с математической точки зрения не всё так хорошо. В отличие от линейной модели, нет очевидной формулы для картинка 243, которая возникала бы из составленной таблицы. На самом деле, единственный способ получить значение картинка 244, по-видимому, заключается в создании таблицы с сотней записей в ней. Утратилась легкость, с которой можно было бы предсказывать будущие значения популяции.

Это то, с чем приходится мириться: хотя нелинейные модели более реалистичны, зачастую не представляется возможным получение явных формул для решения нелинейных дифференциальных уравнениях. Вместо этого используются графические методы и численные эксперименты для того, чтобы получить общее представление о поведении модели.

Первый из таких методов называется «Паутина». Паутина является основным графическим методом для понимания математической модели дискретного логистического уравнения. Это лучше всего проиллюстрировать на примере.

Рассмотрим еще раз модель Математические модели в естественнонаучном образовании Том I - изображение 245, Начнём с построения графика параболы определенной уравнением выражающим - фото 246. Начнём с построения графика параболы, определенной уравнением, выражающим картинка 247 через картинка 248, а также диагональной линии картинка 249, как показано на рисунке 1.3. Так как популяция начинается с картинка 250, отмечаем это значение на горизонтальной оси графика. Теперь, чтобы найти картинка 251, просто двигаемся вертикально вверх по графику параболы, чтобы найти точку картинка 252, как показано на рисунке.

Далее хотелось бы найти картинка 253, но для этого нужно отметить картинка 254 на горизонтальной оси. Самый простой способ сделать это – двигаться горизонтально от точки картинка 255 до диагональной линии. Когда достигнем диагональной линии, окажемся в картинка 256, так как сохранили ту же вторую координату, но изменили первую координату. Теперь, чтобы найти картинка 257, просто двигаемся вертикально назад к параболе, чтобы найти точку картинка 258. Теперь это просто вопрос повторения этих шагов навсегда: двигаться вертикально к параболе, затем горизонтально к диагональной линии, затем вертикально к параболе, затем горизонтально к диагональной линии и так далее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические модели в естественнонаучном образовании. Том I»

Представляем Вашему вниманию похожие книги на «Математические модели в естественнонаучном образовании. Том I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические модели в естественнонаучном образовании. Том I»

Обсуждение, отзывы о книге «Математические модели в естественнонаучном образовании. Том I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x