Денис Соломатин - Математические модели в естественнонаучном образовании. Том I

Здесь есть возможность читать онлайн «Денис Соломатин - Математические модели в естественнонаучном образовании. Том I» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Биология, Медицина, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические модели в естественнонаучном образовании. Том I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические модели в естественнонаучном образовании. Том I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические модели в естественнонаучном образовании. Том I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Параметры картинка 210 и картинка 211 в этой модели имеют физические и биологические интерпретации. Во-первых, если картинка 212, то картинка 213. При положительных темпах роста на душу населения население будет увеличиваться. С другой стороны, если картинка 214, то картинка 215. При отрицательных темпах роста на душу населения численность населения будет сокращаться. Поэтому картинка 216 называют несущей способностью окружающей среды, потому что она представляет собой максимальное количество особей, которые могут поддерживаться в течение длительного периода. Однако, когда население незначительно (т.е. картинка 217 намного меньше, чем картинка 218), множитель Математические модели в естественнонаучном образовании Том I - изображение 219 устремляется в 1. Поэтому для малых значений Математические модели в естественнонаучном образовании Том I - изображение 220 модель аппроксимируется приближенными значениями Математические модели в естественнонаучном образовании Том I - изображение 221.

Другими словами, картинка 222 играет роль картинка 223, в вышеописанной линейной модели. Параметр картинка 224 просто отражает то, как популяция будет расти или уменьшаться в отсутствие факторов, зависящих от плотности, когда численность намного ниже предельного значения. Как правило картинка 225 называют конечной внутренней скоростью роста. Термин «внутренний» относится к отсутствию внешнего воздействия, зависящего от плотности, а термин «конечный» подчеркивает тот факту, что используются временные шаги конечного размера, а не бесконечно малые временные шаги дифференциального уравнения.

Вопросы для самопроверки:

– Какие значения можно ожидать от картинка 226 и картинка 227 в случае, когда захотите смоделировать численность ежегодно поступающих на физико-математические факультеты омских ВУЗов?

Как вы увидите в задачах ниже, существует много способов, которыми разные авторы формируют логистические модели, в зависимости от того, смотрят ли на картинка 228 или картинка 229, используют ли различные множители. Ключевым моментом, который поможет распознать нелинейную модель, является то, что и картинка 230, и картинка 231 выражаются как квадратные трехчлены от картинка 232. Кроме того, эти многочлены не имеют свободного члена (т.е. члена нулевой степени). Таким образом, логистическая модель является простейшей нелинейной моделью, которую можно придумать. Как и в случае с линейной моделью, первым шагом в понимании этой модели является выбор некоторых конкретных значений для параметров картинка 233 и картинка 234, а также для начальной численности картинка 235 и вычисление следующих значений Математические модели в естественнонаучном образовании Том I - изображение 236. Например, выбирая Математические модели в естественнонаучном образовании Том I - изображение 237 и Математические модели в естественнонаучном образовании Том I - изображение 238 так, что Математические модели в естественнонаучном образовании Том I - изображение 239 и Математические модели в естественнонаучном образовании Том I - изображение 240, получаем таблицу 1.5.

Таблица 1.5. Популяционные значения из нелинейной модели

t 0 1 2 3 4 5 6 7 8 9 10

картинка 241 2.0117 3.2972 5.0653 7.0650 8.7238 9.6145 9.9110 9.9816 9.9963 9.9993 9.9999

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические модели в естественнонаучном образовании. Том I»

Представляем Вашему вниманию похожие книги на «Математические модели в естественнонаучном образовании. Том I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические модели в естественнонаучном образовании. Том I»

Обсуждение, отзывы о книге «Математические модели в естественнонаучном образовании. Том I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x