Итак, есть ген RCO , от которого зависит форма листьев, и он появился в результате дупликации другого гена, тоже работающего с формой листьев и цветов. У ранних представителей группы дупликация еще не произошла, поэтому листья у них простые. Но и у резуховидки Таля ( Arabidopsis thaliana ) листья тоже простые, а ген RCO отсутствует, хотя она не относится к базальным представителям группы. При этом у близкого вида, A. lyrata , ген RCO есть, а листья более сложные, лопастные. Вся совокупность данных говорит о том, что вид A. thaliana с простыми листьями и без гена RCO произошел от предков, у которых ген RCO был, а листья имели более сложное строение.
Вроде бы все ясно, но если вдуматься, то сущность новоприобретения остается туманной. Что это за ген RCO ? Каким образом он делает лист более сложным? Чем RCO отличается от своего «исходника», гена LMI 1, и почему у него возникла новая функция? Это как раз те вопросы, которые следует задать, чтобы понять ход эволюционных преобразований. Общие принципы более или менее понятны уже давно, а сегодня нам нужна конкретика. Так что на следующем этапе исследования Даниела Влад и ее коллеги занялись выяснением этой конкретики: что именно делает новый ген RCO ? Изначально ученые отталкивались от прочтенной нуклеотидной последовательности RCO : этот ген, будучи дубликатом LMI 1, со временем накопил отличия как в белок-кодирующей, так и в регуляторной области. Проще всего было предположить, что эти отличия не имеют значения (то есть являются нейтральными мутациями), а дело просто в увеличении производства белка, кодируемого геном LMI 1 и его дубликатом. Исследователи проверили эту гипотезу, создав трансгенные растения с дополнительными копиями гена LMI 1. Это ничего не дало: ни у сердечника с мутацией rco , ни у резуховидки Таля форма листьев не усложнилась. Значит, RCO — не просто еще одна копия LMI 1. Он обладает своей спецификой, которая может быть заключена как в строении кодируемого белка (то есть в белок-кодирующей части гена), так и в том, где и когда ген включается (что определяется его регуляторной областью). Следовательно, нужно изучить отдельно работу регуляторных и белок-кодирующих участков гена RCO .
Сначала изучили работу регуляторных участков LMI 1 и RCO в зачатках листьев сердечника и резуховидки. Чтобы удобнее было регистрировать экспрессию этих генов, к их регуляторным участкам присоединили бактериальный ген, включение которого окрашивает клетки в голубой цвет. Оказалось, что области экспрессии, определяемые регуляторными участками двух генов, сильно различаются. LMI 1 экспрессируется на концах будущих вторичных листочков, которые закладываются как небольшие выступы на краю развивающегося листа, а RCO — в основаниях этих выступов (илл. II, см. цветную вклейку). При этом LMI 1 экспрессируется также в зачатках цветов и прилистников, тогда как работа RCO приурочена исключительно к основаниям вторичных листочков сложного листа. Области экспрессии LMI 1 похожи у разных крестоцветных, включая и упомянутый базальный вид — крылотычинник с простыми листьями.
Таким образом, отличия в регуляторном участке гена RCO , накопленные после дупликации, изменили область его экспрессии по сравнению с исходной (предковой), характерной для LMI 1. Это указывает на то, что RCO приобрел новую функцию (произошла неофункционализация ).
Затем ученые проверили, влияют ли на новую функцию гена RCO особенности его белок-кодирующей части. Они проделали поистине ювелирную работу, присоединив кодирующую часть LMI 1 к регуляторной части RCO и вставив эту конструкцию в геном сердечника с мутацией rco (как мы помним, у сердечника с этой мутацией сложные листья превращаются в простые). В результате простые листья растений-мутантов снова стали сложными. Следовательно, для формирования сложных листьев важны только особенности регуляторной части RCO, а белок-кодирующая часть срабатывает и в старом варианте. Стало быть, белки, кодируемые генами RCO и LMI 1, сами по себе остались взаимозаменимыми. Все дело в том, что появились новые области экспрессии (в основаниях выступов листа) вдобавок к старым (на внешнем краю листовой пластинки).
И вот пришло время решающего эксперимента. Если предположения исследователей верны и листья у A. thaliana упростились в связи с потерей гена RCO , то возвращение утраченного гена должно привести к тому, что листья любимого цветочка генетиков усложнятся. Эксперимент был проведен — и дал положительный результат (рис. 16.2).
Читать дальше
Конец ознакомительного отрывка
Купить книгу