Следующий признак старой клетки – неспособность учиться новому. Иными словами, она не может воспользоваться собственной генетической информацией.
Все клетки организма содержат одинаковые (кроме точечных отличий) молекулы ДНК, а значит, в каждой из них есть полный комплект генов. Но после дифференцировки клетке- профессионалу понадобится только небольшая часть информации. Клетке кости совершенно не нужно производить зрительные пигменты, а нейрону никогда не пригодятся инсулин или гемоглобин. И подобно тому, как школьник, вырастая, забрасывает учебники на антресоль, клетка постепенно скручивает часть своей ДНК, заставляя "молчать" не нужные ей гены.
За сворачивание ДНК отвечают ферменты метилтрансферазы: они навешивают на определенные участки генов метки (метильные группы), которые делают эти участки более липкими, то есть фактически работают как скотч, клейкая лента. Помеченные области ДНК прочно слипаются друг с другом, и считать с них информацию у клетки уже не выйдет. Переход генов из "активных" в "молчащие" и наоборот называют эпигенетическими изменениями (в отличие от наследственных, генетических изменений в самой последовательности ДНК), а метки на ДНК – эпигенетическими маркерами.
Главные перестройки генов происходят, когда клетка получает свою профессию и выбирает, какие из них "закрыть". Поэтому в ядре стволовой клетки гораздо больше раскрученной ДНК, чем у терминально дифференцированной. Но даже зрелая клетка-профессионал в течение жизни продолжает понемногу сворачивать ДНК [203] Zhang R. et al. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA // Developmental Cell. 2005 Jan; 8 (1): 19–30.
, и иногда сенесцентные клетки можно вычислить [204] Muñoz-Espín. D. & Serrano M. Cellular senescence: from physiology to pathology // Nature Reviews Molecular Cell Biology. 2014 Jun; 15: 482–496.
просто по количеству скрученной ДНК.
Одновременно с этим идет и другой процесс – раскручивание старых клубков ДНК. По мере того как вслед за школьными учебниками на антресоль постепенно отправляются и другие полезные книги, из старых чуланов выползает давно забытая рухлядь, занимает место на столе и пылит на всю квартиру. Так, с возрастом раскручиваются [205] Tsurumi A. & Li W. Global heterochromatin loss // Epigenetics. 2012 Jul; 7 (7): 680–688.
участки ДНК со спрятанными ретротранспозонами, о которых мы говорили в предыдущей главе. Безумный ксерокс выходит на свободу и начинает размножаться, повреждая те гены, которые еще доступны клетке.
Таким образом, клеточная жизнь сопровождается крупными переупаковками в ядре: одни участки ДНК сворачиваются, другие разворачиваются. Это связано с тем, что в клетке есть несколько типов метилтрансфераз: одни отвечают за поддержание старых эпигенетических маркеров, другие – за навешивание новых. С возрастом соотношение их активности меняется: первые расслабляются, а вторые, напротив, усиливают свои позиции. Поэтому опознать старую клетку можно не только по ее способностям и немощам, но и по тому, какие части ее ДНК активны, а какие, напротив, "молчат" – то есть по набору эпигенетических маркеров.
С возрастом ДНК не просто перестраивается, но и становится короче. Каждая из 46 наших хромосом – это отдельная нить, по краям которой находятся особые участки – теломеры. При каждом делении клетки небольшой кусочек теломер теряется. Это связано с тем, что полимеразы – белки, которые копируют ДНК, – не могут начать строить вторую цепочку с самого края, им необходимо сначала закрепиться и взять разгон. Поэтому они садятся на "затравочную" молекулу РНК, которая позже исчезает, а самый кончик молекулы, на который крепилась РНК, остается неудвоенным. Одиночные цепи ДНК в клетке долго не живут: их распознает система противовирусной защиты, принимая за кусок чужеродного генома, и уничтожает. Так хромосома становится короче.
В этом нет большой беды именно потому, что на концах хромосом находятся теломеры – набор бессмысленных повторов, которые не несут генетической информации. Они нужны как раз для того, чтобы их терять. Но после определенного количества делений теломеры заканчиваются, и под угрозой исчезновения при копировании оказываются настоящие, "содержательные" гены. В этот момент клетка перестает размножаться, чтобы не лишиться ценной информации и не наплодить потомков-мутантов, – и становится сенесцентной.
Читать дальше
Конец ознакомительного отрывка
Купить книгу