Проект «Минимальный геном» направлен на создание простейшего из простейших жизнеспособного одноклеточного организма. После этого можно будет проводить «апгрейдинг устройства с минимальной конфигурацией». В обычной бактериальной клетке избыточная продукция естественных метаболитов или синтез белка, закодированного в трансгене, конфликтует с основными программами, записанными в тысячах генов и обеспечивающими выживание клетки в природных условиях. В клетке с минимальным геномом все ресурсы, кроме необходимых для жизни и деления в тепличных условиях биореактора, будут направлены на синтез необходимых человеку белков.
Микоплазменный геном сотрудники института Крэйга Вентера собрали в 2008 году, а в 2010-м был предпринят решающий эксперимент, вобравший в себя все многолетние наработки. Синтетический геном бактерии Mycoplasma mycoides длиной более миллиона нуклеотидов внедрили в бактерию другого вида – Mycoplasma capricolum, ДНК которой была заранее удалена. Клетка, где поселился геном-агрессор, отныне выглядела как бактерия Mycoplasma mycoides, успешно размножалась и синтезировала именно те белки, которые ей и положено синтезировать.
Разумеется, никто не утверждает, что Крэйгу Вентеру действительно удалось создать искусственную жизнь. Не следует забывать, что Вентер работал исключительно с геномом, а цитоплазму и внутриклеточные органеллы использовал в готовом виде.
Австрийский биолог Маркус Шмидт пишет:
ДНК составляет примерно один процент сухого веса клетки. Если мы синтезировали всего один процент содержимого клетки, то у нас нет никакой причины утверждать, что мы создали живую клетку. Ведь нам не по силам пока синтезировать цитоплазму. Этого не делал никто.
Однако недооценивать и работы Вентера тоже не стоит, поскольку современные биотехнологии находят сегодня очень широкое применение. Так, совсем недавно ученые сумели «приручить» кишечную палочку – бактерию Escherichia coli, внедрив в нее гены полыни и дрожжей. Отныне она будет синтезировать артемизинин – лекарство, получаемое из однолетней полыни и незаменимое при лечении малярии, которой ежегодно заболевает около 250 миллионов человек. А уже знакомый нам Джей Каслинг собирается наладить массовый выпуск этого препарата и обещает снизить его цену с 2,2 доллара до 25 центов.
В обозримом будущем модифицированные бактерии помогут людям заселить землеподобные планеты – Марс или даже Венеру. А почему бы и нет? В полярных шапках Красной планеты хватает воды, а разреженная марсианская атмосфера, состоящая в основном из двуокиси углерода, может обеспечить неплохой парниковый эффект, если ее дополнительно насытить газами вроде метана. На Земле до сих пор существуют древние бактерии (археи), которые гораздо примитивнее обычных микроорганизмов и могут выживать в исключительно неблагоприятных условиях.
Например, некоторые археи имеют оптимальную температуру роста свыше 100 °C, за что получили название экстремальных термофилов. Прокариоты этой группы обитают на океанском дне, на глубинах порядка двух с половиной километров, где давление составляет 260 атмосфер, а температура воды в зонах выхода горячих термальных источников достигает 250–300 °C. Описаны археи, предпочитающие всему на свете кислую среду, и такие анаэробные формы, метаболизм которых связан с молекулярной серой. Надо сказать, что метаболизм этих необычных микроорганизмов в высшей степени уникален и никогда не встречается у типичных бактерий или эукариот. Например, только у архей обнаружены бесхлорофилльный фотосинтез и особый тип анаэробного (бескислородного) дыхания, в процессе которого происходит образование метана. Такие архебактерии получили название метанобразующих. Кстати, весьма любопытно, что среди прокариот этой группы отсутствуют патогенные и паразитические формы.
Древние бактерии (археи) под микроскопом
Вскоре после успеха Крэйга Вентера и его команды профессор Принстонского университета Майкл Хечт создал гены, кодирующие не существующие в природе белки. Белковая молекула построена всего из 20 аминокислот, однако этого более чем достаточно, поскольку в состав белковой молекулы входит несколько сотен аминокислот. Если их перетасовать, мы получим новый белок с принципиально иными свойствами. Число мыслимых комбинаций многократно превышает количество реальных белков, но это не означает, что любая комбинация даст на выходе работоспособный продукт. Одни белки окажутся нестабильными, другие – токсичными, ну а третьи – просто бесполезными. И все же среди бесчисленного множества виртуальных белков наверняка должны отыскаться аминокислотные последовательности, способные катализировать нужную организму реакцию. Именно такие белки и попытались создать принстонские ученые.
Читать дальше
Конец ознакомительного отрывка
Купить книгу