Но клетка (даже самая элементарная) – чересчур громоздкая структура, чтобы возникнуть скачком, в одночасье. И если мы хотим избавиться от «божественного» представления о зарождении жизни на Земле, нам требуется нарисовать закономерную и непротиворечивую картину возникновения естественным путем сложных макромолекул, способных к самосборке, что со временем приведет к рождению генетического кода, а затем и первых клеток. Жизнь – процесс антиэнтропийный (энтропия – мера беспорядка), для нее характерно самопроизвольное упорядочение и структурное усложнение, а суть этого упорядочения заключается в ограничении свободы. Порядок наводят тысячи белков-ферментов, благодаря которым химические реакции идут в нужном направлении, но беда в том, что белки не умеют сами себя воспроизводить. Способностью к воспроизведению обладают нуклеиновые кислоты, но они лишены каталитической активности и потому нуждаются в помощи ферментов. Таким образом, два важнейших свойства, необходимых для эволюции, – способность к упорядочению и способность к воспроизведению – оказались разделены между двумя классами органических структур. Как природа сумела их объединить?
В 1970-х годах были обнаружены совершенно необычные ферменты, включавшие в свой состав кроме белка еще и молекулу РНК. Когда белок полностью удалили, неожиданно выяснилось, что оставшаяся РНК способна катализировать свою специфическую реакцию. Это было сенсацией, поскольку всегда считалось, что к катализу способны только белки и уж никак не нуклеиновые кислоты. Способные к катализу молекулы РНК назвали рибозимами (по аналогии с энзимами – белковыми ферментами). Многие ученые сразу же заговорили о том, что «в начале была РНК». И действительно, вообразим себе молекулу, которая не только является носителем информации, но и вдобавок умеет катализировать химические реакции. Это же готовый кандидат на роль нашего искомого протовируса, давшего со временем начало всем остальным живым существам!
Но Вентер не остановился на полпути: ведь существуют еще и бактерии, которые тоже подлежат оптимизации. Крэйг Вентер решил, что для его целей больше всего подходят микоплазмы – очень мелкие бактерии, сопоставимые по размерам с крупными вирусами.
Если воздействовать на бактериальную клетку определенными веществами (например, лизоцимом), можно получить формы, лишенные клеточной стенки. Такие «рукотворные» микроорганизмы, получившие название L-форм, чрезвычайно уязвимы и весьма чувствительны к факторам среды. Они способны выживать только в особо благоприятных условиях, когда внешнее осмотическое давление находится в равновесии с внутриклеточным.
Однако микроорганизмы без клеточной стенки найдены и в природе. К их числу относятся микоплазмы – паразиты животных, растений и человека, наиболее примитивные бактериоподобные существа, имеющие клеточное строение. К тому же они самые мелкие из всех бактерий и по размерам приближаются к вирусам. Если, например, вирус гриппа чуть меньше одной десятой микрона, а размеры вируса коровьей оспы колеблются в пределах от 0,22 до 0,26 микрон, то диаметр микоплазмы, вызывающей повальное воспаление легких у рогатого скота, находится в пределах 0,1–0,2 мкм. При этом неприхотливые микоплазмы в отличие от вирусов могут расти и размножаться на синтетической питательной среде, то есть являются полноценными одноклеточными микроорганизмами.
Микоплазменная клетка построена из сравнительно небольшого числа молекул (около 1200), но имеет полный набор компонентов, необходимых для самостоятельного выживания (ДНК, РНК, белки), и содержит около трехсот ферментов. По некоторым признакам микоплазмы стоят ближе к животным, чем к растениям: их клетки заключены в гибкую цитоплазматическую мембрану, а их липидный состав близок к аналогичному показателю в животных клетках.
Крэйг Вентер работал с Mycoplasma genitalium – условно-патогенным обитателем мочеполовых путей, который состоит всего из 517 генов (из них 480 кодируют белки, а 37 – различные молекулы РНК), тогда как нуклеоид средней бактериальной клетки содержит от двух до четырех тысяч генов. Такая неслыханная простота делает микоплазмы идеальным объектом для генно-инженерных манипуляций.
Александр Чубенко отмечает:
Для выживания простейшей «версии» микроорганизма эти гены (имеется в виду полный набор из 517 генов. – Л.Ш .) не являются обязательными. Аккуратно, один за другим, вырезая эти гены из хромосомы M. genitalium, исследователи установили, что в ее лаконичном геноме только около 300 генов действительно необходимы для существования бактерии в питательном бульоне.
Читать дальше
Конец ознакомительного отрывка
Купить книгу