В гл.4 мы рассмотрели аддитивную модель наследования количественных признаков. Суть ее сводилась к тому, что величина признака складывается из суммы примерно равных вкладов большого числа генов. Обширный опыт биометристов показывает, что реальная картина наследования количественных признаков весьма часто начинает неплохо соответствовать аддитивной модели, если их измерять логарифмической, а не обычной (арифметической) шкалой. Особенно четко «улучшающий» эффект логарифмирования проступает, когда значение признака у родителей отличается в несколько раз. Столь большая разница обычно бывает у форм, разделенных или длительной эволюцией, или длительной селекцией. Следовательно, разность логарифмов величины признака родительских форм можно трактовать как сумму соизмеримых эффектов аллельных замещений по значительному числу локусов (см. (5.6)). Аддитивность логарифма отражает мультипликативность величины признака, измеренного арифметической шкалой. Иными словами, эта величина представима в виде произведения близких по значению сомножителей, за каждым из которых стоит отдельный ген.
В предыдущем разделе мы показали, что мультипликативный характер генетического контроля размеров и мощности рабочей структуры возникает в результате весьма длительного движущего отбора, направленного на интенсификацию ее функции. При этом идет аккумуляция генов (названных нами специальными), управляющих программой развития структуры.
Наши знания о скоростях полигенных мутаций базируются на данных, полученных при исследовании очень важного количественного признака — жизнеспособности. Мы уже знаем (гл.4), что мутации по этому признаку разделяются также на две категории: 1) рецессивные летали и полулетали, снижающие жизнеспособность не менее чем в 10 раз; 2) слегка вредящие мутации, снижающие в гомозиготном состоянии жизнеспособность всего на 2–4 %. Напрашивается явная аналогия с только что рассмотренным делением на две категории мутаций по обычным мерным признакам. Летали и полулетали подобны мутациям с качественным эффектом, а слегка вредящие мутации можно считать аналогами полигенных. Т. Мукаи так и назвал их «полигенными мутациями по жизнеспособности». Напомним, что этот японский генетик, следя за возникновением мутаций обеих категорий, сделал важное открытие — он установил, что у дрозофилы полигенные мутации по жизнеспособности возникают в 20–30 раз чаще, чем летали и полулетали.
С эволюционной точки зрения наибольший интерес представляют именно полигенные мутации. Во-первых, они относительно безвредны, т. е. незначительно сказываются на основных показателях приспособленности, и, во-вторых, по скорости возникновения, по-видимому, не менее чем на порядок превосходят мутации с качественным эффектом.
Молекулярная природа генов с количественным эффектом
Здесь мы коснемся сложного вопроса, еще далекого от полной ясности, однако весьма немаловажного для последующего изложения, — молекулярной организации наследственного вещества. Хромосома многоклеточных — это очень длинная (до нескольких сантиметров) единая молекула ДНК. Хотя она и является носителем наследственной информации, из этого совсем не следует, что любая нуклеотидная последовательность генома обязательно влияет на приспособленность. Анализ строения ДНК многоклеточных показывает, что генетическая информация (по крайней мере, доступная нашему пониманию) размещена вдоль этой гигантской молекулы далеко не равномерно. Более того, нет сомнений, что гены занимают в ней только небольшую часть. При этом сам ген состоит из совершенно разных по информационному содержанию сегментов — экзонов и интронов. Первые чаще всего кодируют первичную структуру какого-нибудь белка, а вторые обычно ничего не кодируют (рис. 26).
В межгенных промежутках (а иногда и в интронах) разбросаны нуклеотидные последовательности, имеющие отношение к генной регуляции. Активность гена проявляется в производстве им своего слепка — молекулы РНК, из которой затем вырезаются участки, соответствующие интронам. Заметим, что транскрипция РНК является лишь одним из этапов экспрессии гена. Другие этапы включают в себя синтез, сборку и созревание белковых молекул, а также их транспорт и встраивание в соответствующие субклеточные структуры.
В многоклеточном организме большое число генов находится под жестким контролем программ развития всевозможных морфологических структур, и многие из них активны только в клетках определенного типа. Многочисленные данные, полученные в последнее время, свидетельствуют, что такой контроль осуществляется согласованным взаимодействием регуляторных белков (транс-факторов) с довольно короткими и весьма специфичными последовательностями ДНК (цис-элементами). Большинство цис-элементов расположено невдалеке от точки начала транскрипции гена; одни из них ответственны за тканеспецифичность генной экспрессии, другие — за ее уровень.
Читать дальше