Допустим, нам нужно дополнить схему, изображенную на рис. 10.1, таким образом, чтобы при формировании сигнала высокого уровня (лог. 1) на выходе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ (X-OR) загоралась красная лампочка (5 В/200 Ом). Сопротивление 200 Ом для выхода ТТЛ-схемы — довольно внушительная нагрузка. Необходимо исследовать, сможет ли элемент X-OR подавать такое напряжение, которого будет достаточно, чтобы следующий за ним логический элемент ИЛИ D15A воспринял его как сигнал высокого уровня (лог. 1). В ТТЛ-технике для этого требуется напряжение как минимум 2 В.
Шаг 5Дополните свою схему, установив в ней резистор сопротивлением 200 Ом на выходе логического элемента X-OR (рис. 10.3), и сохраните ее под именем DIGI2.sch. Затем проведите моделирование этой схемы, установив такую комбинацию входных напряжений, которая позволила бы ожидать сигнала высокого уровня (лог. 1) на выходе элемента X-OR. После щелчка по кнопке с изображением большой буквы V чертеж должен приобрести такой же вид, как на рис. 10.3.
Рис. 10.3. Цифровая схема с дополнительным резистором
Взглянув на рис. 10.3, вы можете заметить, каким интересным качеством обладает PSPICE при одновременном моделировании аналоговых (резисторы, конденсаторы, транзисторы, источники напряжения аналогового сигнала и т.п.) и цифровых (логические элементы) компонентов. В тех местах, где узловые пункты связывают исключительно цифровые компоненты, моделирование выявляет цифровые состояния (1 или 0). Там, где на узле находится хотя бы один аналоговый компонент, выдаются значения напряжения. Видно, что напряжение на выходе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ (X-OR) как раз немногим выше двух вольт. Значит, этот резистор может быть подключен напрямую, то есть без дополнительных формирователей.
Шаг 6Уменьшите сопротивление резистора до 180 Ом, сохраните схему под именем DIGI3.sch и с помощью моделирования убедитесь, что при таком сопротивлении напряжение уже не преодолевает TTЛ-границу равную 2 В. Напряжения, имеющие значения от 0.8 до 2 В, в технике выполнения ИС в базисе ТТЛ считаются неопределенными состояниями. Обратите внимание: неопределенное состояние логического элемента X-OR приводит к тому, что выход, где установлена метка out, также принимает неопределенное состояние, которое программа PSPICE обозначает как X (рис. 10.4).
Рис. 10.4. Цифровая схема, где выход элемента ИСКЛЮЧАЮЩЕЕ ИЛИ D18A перегружен и не может передать сигнал достаточно высокого уровня
10.1.1. Упражнение на цифровое моделирование схемы
Протестируйте «интеллект» программы PSPICE, выбрав для схемы с недопустимым сопротивлением R=180 Ом такую комбинацию входных напряжений, которая создаст сигнал логической единицы на выходе элемента ИЛИ-НЕ и, следовательно, несмотря на неопределенное состояние элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, обеспечит ясный сигнал выхода (лог. 1). Поймет ли это PSPICE?
Как вы уже выяснили, лампа с сопротивлением 200 Ом не приводит цифровую схему к неопределенным состояниям, однако хорошим решением это не назовешь, поскольку лампа с номинальным напряжением 5 В при напряжении около 2 В, которое предоставляется на выходе элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, будет работать всего лишь как коптилка. Кроме того, игнорируется требование о соблюдении в ТТЛ-схемах запаса помехоустойчивости в размере 0.4 В. То есть на выходе элемента ИСКЛЮЧАЮЩЕЕ ИЛИ должно быть напряжение как минимум 2.4 В.
Шаг 7Дополните свою схему, установив в ней в качестве формирователя транзистор BC548B (рис. 10.5), и сохраните ее под именем DIGI4.SCH. Заново проведите моделирование. В результате изображение на вашем экране должно соответствовать образцу на рис. 10.5. [34] Способность моделировать смешанные аналоговые и цифровые схемы является отличительной особенностью программы PSPICE. Такое моделирование называется Mixed-Mode Simulation. Благодаря этому программа PSPICE имеет значительное превосходство перед другими логическими анализаторами.
Рис. 10.5. Смешанная аналого-цифровая схема с индикаторами логических состояний на чисто цифровых узлах и аналоговых напряжений на смешанных аналого-цифровых узлах
Читать дальше