Рис. 6.12. График функции с помеченной точкой глобального максимума
Глава 7
Решение дифференциальных уравнений
Дифференциальные уравнения лежат в основе математического моделирования различных, в том числе физических, систем и устройств [1, 38, 46]. Решению таких уравнений посвящена эта глава. В ней рассмотрено как аналитическое, так и численное решение дифференциальных уравнений различного вида — линейных и нелинейных, классических и специальных, например, в частных производных и с учетом двухсторонних граничных условий. Описание сопровождается множеством наглядных примеров, реализованных в СКМ Maple 9.5/10.
7.1. Введение в решение дифференциальных уравнений
7.1.1. Дифференциальные уравнения первого порядка
Дифференциальные уравнения (ДУ) это уравнения, связывающие неизвестную функцию с какими либо ее производными и, возможно, с независимыми переменными. Если неизвестная функция зависит только от одной независимой переменной, то такое уравнение называется обыкновенным дифференциальным уравнением , а если от двух и более многих независимых переменных — дифференциальным уравнением в частных производных.
Простейшее дифференциальное уравнение первого порядка
(7.1)
в общем случае имеет множество решений в виде зависимостей y(х). Однако можно получить единственное решение, если задать начальные условия в виде начальных значений х 0и у 0= у(х 0). Это решение может быть аналитическим, конечно-разностным или численным.
7.1.2. Решение дифференциального уравнения радиоактивного распада
В качестве примера аналитического решения дифференциального уравнения первого порядка (файл der) запишем дифференциальное уравнение радиоактивного распада атомов ( N — число атомов в момент времени t, g= 1/c):
> restart: deq:=diff(N(t),t)=-g*N(t);

Используя функцию dsolve, которая более подробно будет описана чуть позже, получим его общее аналитическое решение:
> dsolve(deq, N(t));
N(t)=_C1e (-gtf)
В решении присутствует произвольная постоянная _С1. Но ее можно заметить на постоянную N(0)=N 0, означающую начальное число атомов в момент t=0:
> dsolve({deq,N(0)=No},N(t));
N(t)=Noe (-gt)
Если конкретно N 0= 100 и g= 4, то получим:
> No := 100; g:=3;
Nо:=100
g:=3
Хотя dsolve выдает решение N(t) в символьном виде, оно пока недоступно для построения графика этого решения или просто вычисления в любой точке. Однако, используя функции assign или subs можно сделать это решение доступным. Например, используем такую конструкцию:
> s: =dsolve({ deq, N(0) =-No}, N (t)); assign(s);
s: = N(t) = 100 e (-3t)
Теперь мы можем воспользоваться полученной зависимостью N(t) и построить граф и к ее:
> plot(N(t),t=0..3,color=black);
Этот график, который читатель может просмотреть сам, описывает хорошо известным апериодическим экспоненциальный закон уменьшения числа атомов вещества в ходе его радиоактивного распада. Подобные зависимости, кстати, характерны для напряжения на конденсаторе С при его разряде через резистор R, для тока в LA-цепи и для многих простых физических явлений, описывающихся дифференциальным уравнением первого порядка.
7.1.3. Модели популяций Мальтуса и Ферхюльса-Пирла
Еще одним классическим примером применения дифференциального уравнения первого порядка является давно известная и довольно грубая модель популяции Мальтуса. Не вдаваясь в хорошо известное описание этой модели, отметим, что она описывает численность особей или их биомассу x(t) в любой момент времени (для момента времени х(0)=N) Эта зависимость характеризуется коэффициентами рождаемости α и смертности β. При этом вводится их разность k=α-β.
Читать дальше
Конец ознакомительного отрывка
Купить книгу