Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• LPSolve — линейное программирование;

• LSSolve — улучшенная реализация метода наименьших квадратов;

• QPSolve — квадратичное программирование;

• NLPSolve — нелинейное программирование.

Функция ImportMPC обеспечивает ввод данных для оптимизации из файла, а функций Interactive позволяет работать с интерактивным Maplet-окном для оптимизации.

С пакетом Optimization можно познакомиться по его справке. В ее разделе Examples есть довольно обширный документ с примерами применения пакета — дополнительными к тем, которые даются к функциям пакета в справке. Начало этого документа представлено на рис. 6.3. В нем представлены основные задачи, решаемые пакетом Optimization — линейное, квадратичное и нелинейное программирование, а также приближение данных и функциональных зависимостей методом наименьших квадратов (нелинейная регрессия).

Рис 63 Начало документа с примерами применения пакета Optimization 662 - фото 806

Рис. 6.3. Начало документа с примерами применения пакета Optimization

6.6.2. Работа с функциями Minimize и Maximize

Функции Minimize и Maximize служат для поиска минимумов и максимумов математических выражений с учетом ограничений самыми современными численными методами. Функции записываются в виде:

Minimize(obj [, constr, bd, opts])

Minimize(opfobj [, ineqcon, eqcon, opfbd, opts])

Maximize(obj [, constr, bd, opts])

Maximize(opfobj [, ineqcon, eqcon, opfbd, opts])

Параметры функций следующие:

• obj — алгебраический объект, целевая функция;

• constr — список с ограничивающими условиями;

• bd — последовательность вида name=range, задающая границы для одной или более переменных;

• opts — равенство или равенства вида option=value, где option одна из опции feasibilitytolerance, infinitebound, initialpoint, iterationlimit или optimalitytolerance, специфицированных в команде Minimize или Maximize.

• opfobj — процедура, целевая функция;

• ineqcon — множество или список процедур с ограничениями типа неравенств;

• eqcon — множество или список процедур с ограничениями типа равенств;

• opfbd — последовательность пределов; границы для всех переменных; Примеры применения этих функций представлены ниже:

> Maximize(sin(х)/х);

[1., [х=2.93847411867272567 10 -11]]

> Minimize(х^2+у^2);

[0., [х=0., у=0.]]

> Minimize(sin(х)/х, initialpoint={x=5});

[-0.217233628211221636 , [х=4.49340945792364720 ]]

> Maximize(sin(x*y*z));

[1., [x=1.16244735150962364, z=1.16244735150962364, y=1.16244735150962364]]

> Minimize(2*х+3*y, {3*х-y<=9, х+y>=2}, assume=nonnegative);

[4., [х=2., y=0.]]

Из этих примеров видно, что результаты вычислений представляются в виде чисел с плавающей точкой с так называемой двойной точностью (правильнее было бы сказать с двойной длиной или разрядностью). При вычислениях используются алгоритмы группы NAG и решатели, описанные ниже.

6.6.3. Линейное программирование — LPSolve

Для решения задач линейного программирования в пакете Optimization введена функция:

LPSolve(obj [, constr, bd, opts])

Она имеет следующие параметры:

• obj — алгебраическое выражений, целевая функция;

• constr — множество или список линейных ограничений;

• bd — последовательность вида name=range, задающая границы одной или многих переменных;

• opts — равенство или равенства в форме option=value, где option одна из опций assume, feasibilitytolerance, infinitebound, initialpoint, iterationlimit или maximize, специализированных для команды LPSolve.

Пример на решение задачи линейного программирования дан на рис. 6.4. Здесь оптимизируется целевая функция -3x-2у, которая линейно зависит от переменных х и у. В этом примере интересна техника графической визуализации решения.

Рис 64 Пример решения задачи линейного программирования Эта функция может - фото 807

Рис. 6.4. Пример решения задачи линейного программирования

Эта функция может задаваться также в матричной форме:

LPSolve(c [, lc, bd, opts])

Здесь с вектор, задающий целевую функция, остальные параметры были определены выше. Пример применения функции LPSolve в матричном виде представлен ниже:

> с := Vector([-1,4,-2], datatype=float):

bl := Vector([2,3,1], datatype=float):

bu := Vector([5,8,2.5], datatype=float):

LPSolve(с, [], [bl, bu]);

┌ ┌ ┐┐

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x