Миран Липовача - Изучай Haskell во имя добра!

Здесь есть возможность читать онлайн «Миран Липовача - Изучай Haskell во имя добра!» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Изучай Haskell во имя добра!: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Изучай Haskell во имя добра!»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Изучай Haskell во имя добра! — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Изучай Haskell во имя добра!», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ghci> [(3,1 % 2),(5,1 % 4),(9,1 % 4)]

[(3,1 % 2),(5,1 % 4),(9,1 % 4)]

Итак, 3имеет один из двух шансов появиться, тогда как 5и 9появляются один раз из четырёх. Просто великолепно!

Мы взяли списки и добавили к ним некоторый дополнительный контекст, так что это тоже представляет значения с контекстами. Прежде чем пойти дальше, давайте обернём это в newtype, ибо, как я подозреваю, мы будем создавать некоторые экземпляры.

import Data.Ratio

newtype Prob a = Prob { getProb :: [(a, Rational)] } deriving Show

Это функтор?.. Ну, раз список является функтором, это тоже должно быть функтором, поскольку мы только что добавили что-то в список. Когда мы отображаем список с помощью функции, то применяем её к каждому элементу. Тут мы тоже применим её к каждому элементу, но оставим вероятности как есть. Давайте создадим экземпляр:

instance Functor Prob where

fmap f (Prob xs) = Prob $ map (\(x, p) –> (f x, p)) xs

Мы разворачиваем его из newtypeпри помощи сопоставления с образцом, затем применяем к значениям функцию f, сохраняя вероятности как есть, и оборачиваем его обратно. Давайте посмотрим, работает ли это:

ghci> fmap negate (Prob [(3,1 % 2),(5,1 % 4),(9,1 % 4)])

Prob {getProb = [(-3,1 % 2),(-5,1 % 4),(-9,1 % 4)]}

Обратите внимание, что вероятности должны давать в сумме 1. Если все эти вещи могут случиться, не имеет смысла, чтобы сумма их вероятностей была чем-то отличным от 1. Думаю, выпадение монеты на решку 75% раз и на орла 50% раз могло бы происходить только в какой-то странной Вселенной.

А теперь главный вопрос: это монада? Учитывая, что список является монадой, похоже, и это должно быть монадой. Во-первых, давайте подумаем о функции return. Как она работает со списками? Она берёт значение и помещает его в одноэлементный список. Что здесь происходит? Поскольку это должен быть минимальный контекст по умолчанию, она тоже должна создавать одноэлементный список. Что же насчёт вероятности? Вызов выражения return xдолжен создавать монадическое значение, которое всегда представляет xкак свой результат, поэтому не имеет смысла, чтобы вероятность была равна 0. Если оно всегда должно представлять это значение как свой результат, вероятность должна быть равна 1!

А что у нас с операцией >>=? Выглядит несколько мудрёно, поэтому давайте воспользуемся тем, что для монад выражение m >>= fвсегда равно выражению join (fmap f m), и подумаем, как бы мы разгладили список вероятностей списков вероятностей. В качестве примера рассмотрим список, где существует 25-процентный шанс, что случится именно 'a'или 'b'. И 'a', и 'b'могут появиться с равной вероятностью. Также есть шанс 75%, что случится именно 'c'или 'd'. То есть 'c'и 'd'также могут появиться с равной вероятностью. Вот рисунок списка вероятностей, который моделирует данный сценарий:

Каковы шансы появления каждой из этих букв Если бы мы должны были изобразить - фото 106

Каковы шансы появления каждой из этих букв? Если бы мы должны были изобразить просто четыре коробки, каждая из которых содержит вероятность, какими были бы эти вероятности? Чтобы узнать это, достаточно умножить каждую вероятность на все вероятности, которые в ней содержатся. Значение 'a'появилось бы один раз из восьми, как и 'b', потому что если мы умножим одну четвёртую на одну четвёртую, то получим одну восьмую. Значение 'c'появилось бы три раза из восьми, потому что три четвёртых, умноженные на одну вторую, – это три восьмых. Значение 'd'также появилось бы три раза из восьми. Если мы сложим все вероятности, они по-прежнему будут давать в сумме единицу.

Вот эта ситуация, выраженная в форме списка вероятностей:

thisSituation :: Prob (Prob Char)

thisSituation = Prob

[(Prob [('a',1 % 2),('b',1 % 2)], 1 % 4)

,(Prob [('c',1 % 2),('d',1 % 2)], 3 % 4)

]

Обратите внимание, её тип – Prob (Prob Char). Поэтому теперь, когда мы поняли, как разгладить вложенный список вероятностей, всё, что нам нужно сделать, – написать для этого код. Затем мы можем определить операцию >>=просто как join (fmap f m), и заполучим монаду! Итак, вот функция flatten, которую мы будем использовать, потому что имя joinуже занято:

flatten :: Prob (Prob a) –> Prob a

flatten (Prob xs) = Prob $ concat $ map multAll xs

where multAll (Prob innerxs, p) = map (\(x, r) –> (x, p*r)) innerxs

Функция multAllпринимает кортеж, состоящий из списка вероятностей и вероятности p, которая к нему приложена, а затем умножает каждую внутреннюю вероятность на p, возвращая список пар элементов и вероятностей. Мы отображаем каждую пару в нашем списке вероятностей с помощью функции multAll, а затем просто разглаживаем результирующий вложенный список.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Изучай Haskell во имя добра!»

Представляем Вашему вниманию похожие книги на «Изучай Haskell во имя добра!» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Изучай Haskell во имя добра!»

Обсуждение, отзывы о книге «Изучай Haskell во имя добра!» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x