function randomPointOnCircle(radius) {
var angle = Math.random() * 2 * Math.PI;
return {x: radius * Math.cos(angle),
y: radius * Math.sin(angle)};
}
console.log(randomPointOnCircle(2));
// → {x: 0.3667, y: 1.966}
Если вы незнакомы с синусами и косинусами – не отчаивайтесь. Мы их будем использовать в 13 главе, и тогда я их объясню.
В предыдущем примере используется Math.random. Это функция, возвращающая при каждом вызове новое псевдослучайное число между нулём и единицей (включая ноль).
console.log(Math.random());
// → 0.36993729369714856
console.log(Math.random());
// → 0.727367032552138
console.log(Math.random());
// → 0.40180766698904335
Хотя компьютеры – машины детерминированные (они всегда реагируют одинаково на одни и те же входные данные), возможно заставить их выдавать кажущиеся случайными числа. Для этого машина хранит у себя во внутреннем состоянии несколько чисел. Каждый раз, когда идёт запрос на случайное число, она выполняет разные сложные детерминированные вычисления и возвращает часть результата вычислений. Этот результат она использует для того, чтобы изменить своё внутреннее состояние, поэтому следующее «случайное» число получается другим.
Если вам нужно целое случайное число, а не дробь, вы можете использовать Math.floor(округляет число вниз до ближайшего целого) на результате Math.random.
console.log(Math.floor(Math.random() * 10));
// → 2
Умножая случайное число на 10, получаем число от нуля до 10 (включая ноль). Так как Math.floorокругляет вниз, мы получим число от 0 до 9 включительно.
Есть также функция Math.ceil(от «ceiling» – потолок, округляет вверх до ближайшего целого) и Math.round(округляет до ближайшего целого).
К глобальной области видимости, где живут глобальные переменные, можно также получить доступ как к объекту. Каждая глобальная переменная является свойством этого объекта. В браузерах глобальная область видимости хранится в переменной window.
var myVar = 10;
console.log("myVar" in window);
// → true
console.log(window.myVar);
// → 10
Объекты и массивы (которые представляют из себя подвид объектов) позволяют сгруппировать несколько величин в одну. В принципе, это позволяет нам засунуть несколько связанных между собой вещей в мешок и бегать с ним кругами, вместо того, чтобы пытаться сгребать все эти вещи руками и пытаться держать их каждую по отдельности.
У большинства величин в JavaScript есть свойства, исключение составляют nullи undefined. Мы получаем доступ к ним через value.propNameили value["propName"]. Объекты используют имена для хранения свойств и хранят более-менее фиксированное их количество. Массивы обычно содержат переменное количество сходных по типу величин и используют числа (начиная с нуля) в качестве имён этих величин.
Также в массивах есть именованные свойства, такие как length, и несколько методов. Методы – это функции, живущие среди свойств и (обычно) работающие над той величиной, чьим свойством они являются.
Объекты также могут работать как карты, ассоциируя значения с именами. Оператор inиспользуется для выяснения того, содержит ли объект свойство с данным именем. Это же ключевое слово используется в цикле for( for (var name in object)) для перебора всех свойств объекта.
Во введении был упомянут удобный способ подсчёта сумм диапазонов чисел:
console.log(sum(range(1, 10)));
Напишите функцию range, принимающую два аргумента – начало и конец диапазона – и возвращающую массив, который содержит все числа из него, включая начальное и конечное.
Затем напишите функцию sum, принимающую массив чисел и возвращающую их сумму. Запустите указанную выше инструкцию и убедитесь, что она возвращает 55.
В качестве бонуса дополните функцию range, чтобы она могла принимать необязательный третий аргумент – шаг для построения массива. Если он не задан, шаг равен единице. Вызов функции range(1, 10, 2)должен будет вернуть [1, 3, 5, 7, 9]. Убедитесь, что она работает с отрицательным шагом так, что вызов range(5, 2, -1)возвращает [5, 4, 3, 2].
console.log(sum(range(1, 10)));
// → 55
console.log(range(5, 2, -1));
// → [5, 4, 3, 2]
У массивов есть метод reverse, меняющий порядок элементов в массиве на обратный. В качестве упражнения напишите две функции, reverseArrayи reverseArrayInPlace. Первая получает массив как аргумент и выдаёт новый массив – с обратным порядком элементов. Вторая работает как оригинальный метод reverse– она меняет порядок элементов на обратный в том массиве, который был ей передан в качестве аргумента. Не используйте стандартный метод reverse.
Читать дальше