Эмили Робинсон - Data Science для карьериста

Здесь есть возможность читать онлайн «Эмили Робинсон - Data Science для карьериста» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Жанр: Программирование, foreign_comp, job_hunting, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science для карьериста: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science для карьериста»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Все мы хотим построить успешную карьеру. Как найти ключ к долгосрочному успеху в Data Science? Для этого понадобятся не только технические ноу-хау, но и правильные «мягкие навыки». Лишь объединив оба этих компонента, можно стать востребованным специалистом.Узнайте, как получить первую работу в Data Science и превратиться в ценного сотрудника высокого уровня! Четкие и простые инструкции научат вас составлять потрясающие резюме и легко проходить самые сложные интервью. Data Science стремительно меняется, поэтому поддерживать стабильную работу проектов, адаптировать их к потребностям компании и работать со сложными стейкхолдерами не так уж и легко. Опытные дата-сайентисты делятся идеями, которые помогут реализовать ваши ожидания, справиться с неудачами и спланировать карьерный путь.
В формате PDF A4 сохранен издательский макет.

Data Science для карьериста — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science для карьериста», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Часть 1

Data Science. С чего начать

Если вы загуглите как стать специалистом Data Science перед вами скорее - фото 2

Если вы загуглите «как стать специалистом Data Science», перед вами, скорее всего, появится обширный список, содержащий навыки от статистического моделирования до программирования на Python, а также информация об эффективном общении и проведении презентаций. В одной вакансии может описываться роль, схожая с ролью специалиста по статистике, в то время как другой работодатель ищет кого-то с дипломом магистра информатики. Интернет вам предложит различные варианты приобретения нужных навыков – от возвращения в университет на магистерскую программу до прохождения учебного курса или практики анализа данных на текущем месте работы. В совокупности все эти способы могут показаться непреодолимыми, особенно для тех, кто еще до конца даже не определился с решением стать дата-сайентистом.

Для вас есть хорошая новость: не существует ни одного специалиста по Data Science, который обладал бы всеми этими навыками. У дата-сайентистов есть общий фундамент знаний, но каждый из них специализируется в конкретной области, причем настолько, что многие не смогут поменяться обязанностями. Первая часть этой книги призвана помочь вам разобраться во всех этих специализациях и в том, как принимать наилучшие решения для старта вашей карьеры. К концу у вас будет понимание того, как начать поиск работы.

В главе 1 раскрываются основы работы в Data Science, включая описание необходимых навыков и различных специализаций. В главе 2 подробно рассказывается о роли дата-сайентиста и о пяти типах компаний – это поможет вам лучше понять, на что будет похожа реальная работа. В главе 3 описываются различные пути приобретения навыков, а также преимущества и недостатки каждого из них. Из главы 4 вы узнаете, как создать портфолио как для практического опыта, так и для потенциальных работодателей.

1. Что такое Data Science?

В этой главе Три основных направления Data Science Разные типы должностей - фото 3

В этой главе

• Три основных направления Data Science.

• Разные типы должностей в области Data Science.

«Самая сексуальная работа XXI века», «Лучшая работа в Америке»… Дата-сайентист – должность, названия которой даже не существовало до 2008 года, теперь является одной из самых востребованных среди соискателей, а работодатели не могут найти достаточное число подобных сотрудников. У такого ажиотажа есть веская причина: Data Science – это быстро развивающаяся область, медианная базовая зарплата специалистов которой в США в 2019 году составила более $100 000 (http://mng.bz/XpMp). В хорошей компании дата-сайентисты пользуются большой автономией и постоянно изучают что-то новое. Они используют свои знания для решения серьезных задач: например, работают с врачами во время испытаний лекарственных препаратов, помогают спортивной команде в подборе новобранцев или изменяют модель ценообразования для бизнеса по производству виджетов. Наконец, в главе 3 мы поговорим о том, что универсального способа стать дата-сайентистом нет. В эту сферу приходят люди с разным образованием, поэтому вы не ограничены своей бакалаврской специальностью.

Однако не вся работа в сфере DS идеальна. И у компаний, и у соискателей бывают нереалистичные ожидания. Например, компании, плохо знакомые с Data Science, могут считать, будто один человек может решить все их задачи с помощью данных. Когда дата-сайентист наконец принят на работу в такую компанию, он сталкивается с бесконечным списком дел. Ему могут поручить немедленно внедрить систему машинного обучения, при том что никакие работы по подготовке или очистке данных предварительно не проводились. Иногда случается так, что никто не может ему помочь, направить или хотя бы посочувствовать при возникновении проблем. Мы поговорим об этом подробнее в главах 5 и 7, где расскажем, как не оказаться в не подходящих для новичка компаниях, а в главе 9 посоветуем, что делать, если вы попали в неприятную ситуацию.

С другой стороны, соискатели могут подумать, что им никогда не придется скучать. Они могут рассчитывать на то, что стейкхолдеры будут просто следовать их советам, дата-инженеры смогут в мгновение ока исправить любые проблемы с качеством данных, а сами они получат самые быстрые вычислительные ресурсы из возможных для реализации своих моделей. На самом деле дата-сайентисты тратят много времени на очистку и подготовку данных, а также на организацию работы с учетом ожиданий и приоритетов других команд. Проекты не всегда оказываются удачными. Высшее руководство может давать клиентам нереалистичные обещания о работе ваших моделей. Основные обязанности могут заключаться в работе с архаичной системой данных, которую невозможно автоматизировать, – каждую неделю она будет требовать многочасового монотонного труда только на их очистку. Дата-сайентисты могут обнаружить множество статистических или технических ошибок с серьезными последствиями в предыдущих расчетах, но они не будут никого интересовать. При этом специалисты настолько перегружены работой, что им просто некогда что-либо исправлять. Дата-сайентиста могут попросить подготовить отчеты, подтверждающие решение руководства, поэтому он может беспокоиться о том, что его уволят в случае, если он предоставит независимое мнение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science для карьериста»

Представляем Вашему вниманию похожие книги на «Data Science для карьериста» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science для карьериста»

Обсуждение, отзывы о книге «Data Science для карьериста» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x