Владстон Феррейра Фило - Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]

Здесь есть возможность читать онлайн «Владстон Феррейра Фило - Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: СПб., Год выпуска: 2018, ISBN: 2018, Издательство: Питер, Жанр: Программирование, Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Хватит тратить время на скучные академические фолианты! Изучение Computer Science может быть веселым и увлекательным занятием.
Владстон Феррейра Фило знакомит нас с вычислительным мышлением, позволяющим решать любые сложные задачи. Научиться писать код просто — пара недель на курсах, и вы «программист», но чтобы стать профи, который будет востребован всегда и везде, нужны фундаментальные знания. Здесь вы найдете только самую важную информацию, которая необходима каждому разработчику и программисту каждый день. cite
Владстон Феррейра Фило

Теоретический минимум по Computer Science [Все что нужно программисту и разработчику] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3) лучшая сделка с покупкой в первой половине и продажей во второй.

Рис 312Демонстрация выполнения функции trade Прямоугольники показывают - фото 147

Рис. 3.12.Демонстрация выполнения функции trade. Прямоугольники показывают отдельные вызовы trade с входными и выходными данными

Первые два случая — это решения подзадач. Третий легко находится: нужно найти самую низкую цену в первой половине списка и самую высокую во второй. Если на входе данные всего за один день, то единственным вариантом становится покупка и продажа в этот день, что приводит к нулевой прибыли.

function trade(prices)

····if prices.length = 1

········return 0

····former ← prices.first_half

····latter ← prices.last_half

····case3 ← max(latter) — min(former)

····return max(trade(former), trade(latter), case3)

Функция trade выполняет тривиальное сравнение, разбивает список пополам и находит максимум и минимум в его половинах. Поиск максимума или минимума в списке из n элементов требует просмотра всех n элементов, таким образом, отдельный вызов trade стоит O ( n ).

Вы наверняка заметите, что дерево рекурсивных вызовов функции trade (рис. 3.12) очень похоже на такое же для сортировки слиянием (рис. 3.11). Оно тоже имеет log 2 n шагов разбиения, каждый стоимостью O ( n ). Следовательно, функция trade тоже имеет сложность O ( n log n ) — это огромный шаг вперед по сравнению со сложностью O ( n 2) предыдущего подхода, основанного на полном переборе.

Разделить и упаковать

Задачу о рюкзаке (см. раздел «Полный перебор» картинка 148) тоже можно разделить и тем самым решить. Если вы не забыли, у нас n предметов на выбор. Мы обозначим свойство каждого из них следующим образом:

w i— это вес i -го предмета;

v i— это стоимость i- го предмета.

Индекс i предмета может быть любым числом от 1 до n . Максимальный доход для вместимости c рюкзака с уже выбранными n предметами составляет K ( n, c ). Если рассматривается дополнительный предмет i = n + 1, то он либо повысит, либо не повысит максимально возможный доход, который становится равным большему из двух значений.

1. K ( n, c ) — если дополнительный предмет не выбран.

2. K ( n, cw n+1) + v n+1— если дополнительный предмет выбран.

Случай 1 предполагает отбраковку нового предмета, случай 2 — включение его в набор и размещение среди выбранных ранее вещей, обеспечивая для него достаточное пространство. Это значит, что мы можем определить решение для n предметов как максимум частных решений для n — 1 предметов:

K ( n, c ) = max ( K ( n − 1, c ),

K ( n − 1, cw n) + v n).

Вы уже достаточно знаете и должны легко преобразовать эту рекурсивную формулу в рекурсивный алгоритм. Рисунок 3.13 иллюстрирует, как рекурсивный процесс решает задачу. На схеме выделены одинаковые варианты — они представляют идентичные подзадачи, вычисляемые более одного раза. Далее мы узнаем, как предотвратить такие повторные вычисления и повысить производительность.

Рис 313Решение задачи о рюкзаке с 5 предметами и вместимостью рюкзака 4 - фото 149

Рис. 3.13.Решение задачи о рюкзаке с 5 предметами и вместимостью рюкзака 4. Предметы под номерами 5 и 4 весят две единицы, остальные — одну единицу

3.7. Динамическое программирование

Во время решения задачи иногда приходится выполнять одни и те же вычисления многократно [41] В таком случае говорят, что задачи имеют перекрывающиеся подзадачи. . Динамическое программирование позволяет идентифицировать повторяющиеся подзадачи, чтобы можно было выполнить каждую всего один раз. Общепринятый метод, предназначенный для этого, основан на запоминании и имеет «говорящее» название. картинка 150

Мемоизация Фибоначчи

Помните алгоритм вычисления чисел Фибоначчи? Его дерево рекурсивных вызовов (см. рис. 3.3) показывает, что fib(3) вычисляется многократно. Мы можем это исправить, сохраняя результаты по мере их вычисления и делая новые вызовы fib только для тех вычислений, результатов которых еще нет в памяти (рис. 3.14). Этот прием

Рис 314Дерево рекурсивных вызовов для dfib Зеленые прямоугольники - фото 151

Рис. 3.14.Дерево рекурсивных вызовов для dfib. Зеленые прямоугольники обозначают вызовы, не выполняемые повторно

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»

Представляем Вашему вниманию похожие книги на «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»

Обсуждение, отзывы о книге «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x