Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Здесь есть возможность читать онлайн «Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2003, ISBN: 2003, Издательство: ДиаСофтЮП, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фундаментальные алгоритмы и структуры данных в Delphi: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фундаментальные алгоритмы и структуры данных в Delphi»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фундаментальные алгоритмы и структуры данных в Delphi», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поскольку в двухсвязном списке присутствует обратный указатель, реализация методов класса проще, нежели для односвязного списка. Теперь у нас имеется возможность перейти к предыдущему элементу, если это будет необходимо.

Конструктор Create распределяет при помощи диспетчера узлов еще один дополнительный фиктивный узел - FTail. Как упоминалось во введении к двухсвязным спискам, он предназначен для обозначения конца списка. Начальный и конечный фиктивные узлы вначале будут связаны друг с другом, т.е. ссылка Next начального узла указывает на конечный узел, а ссылка Prior конечного узла - на начальный узел. Естественно, деструктор Destroy будет удалять фиктивный конечный узел и возвращать его вместе с начальным узлов в диспетчер узлов.

Листинг 3.14. Конструктор Create и деструктор Destroy класса TtdDoubleLinkList

constructor TtdDoubleLinkList.Create;

begin

inherited Create;

{сохранить процедуру удаления}

FDispose :=aDispose;

{получить диспетчер узлов}

dllGetNodeManager;

{распределить и связать начальный и конечный узлы}

FHead := PdlNode (DLNodeManager.AllocNode);

FTail := PdlNode (DLNodeManager.AllocNode);

FHead^.dlnNext := FTail;

FHead^.dlnPrior :=nil;

FHead^.dlnData := nil;

FTail^.dlnNext := nil;

FTail^.dlnPrior := FHead;

FTail^.dlnData := nil;

{установить курсор на начальный узел}

FCursor := FHead;

FCursorIx := -1;

end;

destructor TtdDoiibleLinkList.Destroy;

begin

if (Count <> 0) then

Clear;

DLNodeManager.FreeNode (FHead);

DLNodeManager.FreeNode(FTail);

inherited Destroy;

end;

Методы последовательного доступа, т.е. традиционные для связных списков методы, реализуются для двухсвязного списка очень просто. Нам уже не требуется сохранять родительский узел, что упрощает реализацию, однако при вставке и удалении элементов приходится работать с четырьмя указателями, а не с двумя, как это имело место для односвязного списка.

Листинг 3.15. Стандартные для связного списка операции для класса TtdDoubleLinkList

procedure TtdDoubleLinkList.Clear;

var

Temp : PdlNode;

begin

{удалить все узлы, за исключением начального и конечного; если возможно их освободить, то сделать это}

Temp := FHead^.dlnNext;

while (Temp <> FTail) do

begin

FHead^.dlnNext := Temp^.dlnNext;

if Assigned(FDispose) then

FDispose(Temp^.dlnData);

DLNodeManager.FreeNode(Temp);

Temp := FHead^.dlnNext;

end;

{устранить "дыру" в связном списке}

FTail^.dlnPrior := FHead;

FCount := 0;

{установить курсор на начальный узел}

FCursor := FHead;

FCursorIx := -1;

end;

procedure TtdDoubleLinkList.DeleteAtCursor;

var

Temp : PdlNode;

begin

{записать в Temp удаляемый узел}

Temp := FCursor;

if (Temp = FHead) or (Temp = FTail) then

dllError(tdeListCannotDelete, 'Delete');

{избавиться от его содержимого}

if Assigned(FDispose) then

FDispose(Temp^.dlnData);

{удалить ссылки на узел и освободить его; курсор перемещается на следующий узел}

Temp^.dlnPrior^.dlnNext := Temp^.dlnNext;

Temp^.dlnNext^.dlnPrior := Temp^.dlnPrior;

FCursor := Temp^.dlnNext;

DLNodeManager.FreeNode(Temp);

dec(FCount);

end;

function TtdDoubleLinkList.Examine : pointer;

begin

if (FCurgor = nil) or (FCursor = FHead) then

dllError(tdeListCannotExamine, 'Examine');

{вернуть данные узла в позиции курсора}

Result := FCursor^.dlnData;

end;

procedure TtdDoubleLinkList.InsertAtCursor(aItem : pointer);

var

NewNode : PdlNode;

begin

{если курсор находится на начальном узле, не генерировать исключение, а перейти на следующий узел}

if (FCursor = FHead) then

MoveNext;

{распределить новый узел и вставить его перед позицией курсора}

NewNode := PdlNode (DLNodeManager.AllocNode);

NewNode^.dlnData := aItem;

NewNode^.dlnNext := FCursor;

NewNode^.dlnPrior := FCursor^.dlnPrior;

NewNode^.dlnPrior^.dlnNext := NewNode;

FCursor^.dlnPrior := NewNode;

FCursor := NewNode;

inc(FCount);

end;

function TtdDoubleLinkList.IsAfterLast : boolean;

begin

Result := FCursor = FTail;

end;

function TtdDoubleLinkList.IsBeforeFirst;

boolean;

begin

Result := FCursor = FHead;

end;

function TtdDoubleLinkList.IsEmpty : boolean;

begin

Result := (Count = 0);

end;

procedure TtdDoubleLinkList.MoveAfterLast;

begin

{установить курсор на конечный узел}

FCursor := FTail;

FCursorIx := Count;

end;

procedure TtdDoubleLinkList.MoveBeforeFirst;

begin

{установить курсор на начальный узел}

FCursor := FHead;

FCursorIx := -1;

end;

procedure TtdDoubleLinkList.MoveNext;

begin

{переместить курсор по его прямому указателю}

if (FCursor <> FTail) then begin

FCursor := FCursor^.dlnNext;

inc(FCursorIx);

end;

end;

procedure TtdDoubleLinkList.MovePrior;

begin

{переместить курсор по его обратному указателю}

if (FCursor <> FHead) then begin

FCursor := FCursor^.dlnPrior;

dec(FCursorIx);

end;

end;

Если сравнить приведенный код с его эквивалентом для односвязных списков (листинг 3.9), можно понять, каким образом дополнительные обратные связи влияют на реализацию методов. С одной стороны, методы стали немного проще. Так, например, в случае двухсвязных списков для метода MoveNext не нужно вводить переменную FParent. С другой стороны, требуется дополнительный код для обработки обратных ссылок. Примером могут служить методы InsertAtCursor и DeleteAtCursor.

Методы, основанные на использовании индекса, в случае двухсвязного списка реализуются проще, чем в случае односвязного. Единственную сложность представляет метод dllPositionAtNth, предназначенный для установки курсора в позицию с заданным индексом. Вспомните алгоритм для односвязного списка: если заданный индекс соответствует позиции после курсора, начать с позиции курсора и идти вперед, вычисляя индекс. В двухсвязном списке при необходимости можно двигаться и в обратном направлении. Таким образом, алгоритм поиска можно немного изменить. Как и ранее, мы определяем, где по отношению к курсору находится узел с заданным индексом. После этого выполняется еще одно вычисление -ближе к какому узлу находится узел с заданным индексом: к начальному, конечному или к текущему? Далее мы начинаем прохождение с ближайшего узла, при необходимости двигаясь вперед или назад.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi»

Представляем Вашему вниманию похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Михаил Краснов
Сергей Талипов - Базы данных на Delphi 7
Сергей Талипов
Отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi»

Обсуждение, отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x