Полученная сокращенная подпоследовательность длиной x - 1 представляет собой LCS двух сокращенных слов. (Если бы это было не так, для двух сокращенных слов должна была бы существовать общая подпоследовательность длиной X или больше. Добавление заключительных букв привело бы к увеличению длины новой общей подпоследовательности на единицу, а, значит, для двух полных слов должна была бы существовать общая подпоследовательность, содержащая x+1 или более букв. Это противоречит предположению о том, что мы определили LCS.)
Теперь предположим, что последняя буква в LCS не совпадает с последней буквой первого слова. Это означало бы, что LCS двух полных слов была бы также LCS первого слова без последней буквы и второго слова (если бы это было не так, можно было бы снова добавить последнюю букву к первому слову и найти более длинную LCS двух слов). Эти же рассуждения применимы и к случаю, когда последняя буква второго слова не совпадает с последней буквой LCS.
Все это замечательно, но о чем же оно свидетельствует? LCS содержит в себе LCS усеченных частей обоих слов. Для отыскания LCS строк X и Y мы разбиваем задачу на более мелкие задачи. Если бы последние символы слов X и Y совпадали, нам пришлось бы найти LCS для строк X и Y без их последних букв, а затем добавить эту общую букву. Если нет, нужно было бы найти LCS для строки X без последней буквы и строки Y, а также LCS строки X и строки Y без ее последней буквы, а затем выбрать более длинную из них. Мы получаем простой рекурсивный алгоритм.
Однако во избежание проблемы, которая может быть порождена простым решением, вначале необходимо описать алгоритм несколько подробней.
Мы пытаемся вычислить LCS двух строк X и Y. Вначале мы определяем, что строка X содержит n символов, а строка Y - m. Обозначим строку, образованную первыми i символами строки X, как Х(_i_). i может принимать также нулевое значение, что означает пустую стоку (это соглашение упростит понимание алгоритма). В таком случае Х(_n_) соответствует всей строке. С применением этой формы записи алгоритм сводится к следующему; если последние два символа строк Х(_n_) и Y(_m_) совпадают, самая длинная общая последовательность равна LCS Х(_n-1_) и Y(_m-1_) с добавлением этого последнего символа. Если они не совпадают, LCS равна более длинной из LCS строк Х(_n-2_) и Y(_m_) и LCS строк Х(_n_) и Y(_m-1_). Для вычисления этих "меньших" LCS мы рекурсивно вызываем одну и ту же подпрограмму.
Тем не менее, обратите внимание, что для вычисления LCS строк Х(_n-1_) и Y(_m_) может потребоваться вычислить LCS строк Х(_n-2_) и Y(_m-1_), LCS строк Х(_n-1_) и Y(_m-1_) и LCS строк Х(_n-2_) и Y(_m_). Вторую из этих подпоследовательностей можно уже вычислить. При недостаточной внимательности можно было бы вычислять одни и те же LCS снова и снова. В идеале во избежание этих повторных вычислений нужно было бы кешировать ранее вычисленные результаты. Поскольку мы располагаем двумя индексами для строк X и Y, имеет смысл воспользоваться матрицей.
Что необходимо хранить в каждом из элементов этого матричного кеша? Очевидный ответ - саму строку LCS. Однако, это не слишком целесообразно - да, это упростит вычисление LCS, но не поможет определить, какие символы нужно удалить из строки X, а какие новые символы вставить с целью получения строки Y. Лучше в каждом элементе хранить достаточный объем информации, чтобы можно было генерировать LCS за счет применения алгоритма типа O(1), а также достаточный объем информации для определения команд редактирования, обеспечивающих переход от строки X к строке Y.
Один из информационных элементов, в котором мы действительно нуждаемся, -это длина LCS на каждом этапе. Используя упомянутое значение, с помощью рекурсивного алгоритма можно легко выяснить длину LCS для двух полных строк. Чтобы можно было сгенерировать саму строку LCS, необходимо знать путь, пройденный по матричному кешу. Для этого в каждом элементе потребуется сохранять указатель на предыдущий элемент, который был использован для построения LCS для данного элемента.
Однако прежде чем приступить к рассмотрению просмотра матрицы LCS, необходимо ее построить. Пока же будем считать, что в каждом элементе матрицы будут храниться два информационных фрагмента: длина LCS на данном этапе и позиция предыдущего элемента матрицы, образующего предшественницу этой LCS. Для последнего значения существует только три возможных ячейки: непосредственно над ним (к северу), слева (к западу) и выше и левее (к северо-западу). Поэтому для их обозначения вполне можно было бы использовать перечислимый тип.
Читать дальше