Полный код обоих классов TtdInputBitStrem и TtdOutputBitStrem можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDStrms.pas. Полный код содержит также подпрограммы одновременного считывания и записи нескольких битов - либо восьми битов отдельного байта (ReadByte и WriteByte), либо переменного числа байтов из массива байтов (ReadBits и WriteBits). Для доступа к отдельным битам все эти дополнительные подпрограммы используют одну и ту же методологию манипуляции битами. Просто соответствующие операции выполняются в цикле.
Сжатие с минимальной избыточностью
Теперь, когда в нашем распоряжении имеется класс потока битов, им можно воспользоваться при рассмотрении алгоритмов сжатия и восстановления данных. Мы начнем с исследования алгоритмов кодирования с минимальной избыточностью, а затем рассмотрим более сложное сжатие с применением словаря.
Мы приведем подробное описание трех алгоритмов кодирования с минимальной избыточностью: кодирование Шеннона-Фано (Shannon-Fano), кодирование Хаффмана (Huffman) и сжатие с применением скошенного дерева (splay tree compression), однако рассмотрим реализации только последних двух алгоритмов (алгоритм кодирования Хаффмана ни в чем не уступает, а кое в чем даже превосходит алгоритм кодирования Шеннона-Фано). При использовании каждого из этих алгоритмов входные данные анализируются как поток байтов, и различным значениям байтов тем или иным способом присваиваются различные последовательности битов.
Первый алгоритм сжатия, который мы рассмотрим - кодирование Шеннона-Фано, названное так по имени двух исследователей, которые одновременно и независимо друг от друга разработали этот алгоритм: Клода Шеннона (Claude Shannon) и Р. М. Фано (R. М. Fano). Алгоритм анализирует входные данные и на их основе строит бинарное дерево минимального кодирования. Используя это дерево, затем можно выполнить повторное считывание входных данных и закодировать их.
Чтобы проиллюстрировать работу алгоритма, выполним сжатие предложения "How much wood could a woodchuck chuck?" ("Сколько дров мог бы заготовить дровосек?") Прежде всего, предложение необходимо проанализировать. Просмотрим данные и вычислим, сколько раз в предложении встречается каждый символ. Занесем результаты в таблицу (см. таблицу 11.1).
Таблица 11.1. Частота появления символов в примере предложения
Символ - Количество появлений
Пробел - 6
c - 6
o - 6
u - 4
d - 3
h - 3
w - 3
k - 2
H - 1
a - 1
l - 1
m - 1
? - 1
Теперь разделим таблицу на две части, чтобы общее число появлений символов в верхней половине таблицы приблизительно равнялось общему числу появлений в нижней половине. Предложение содержит 38 символов, следовательно, верхняя половина таблицы должна отражать приблизительно 19 появлений символов. Это просто: достаточно поместить разделительную линию между строкой о и строкой и. В результате этого верхняя половина таблицы будет отражать появление 18 символов, а нижняя - 20. Таким образом, мы получаем таблицу 11.2.
Таблица 11.2. Начало построения дерева Шеннона-Фано
Символ - Количество появлений
Пробел - 6
c - 6
o - 6
------------------------------------ разделительная линия 1
u - 4
d - 3
h - 3
w - 3
k - 2
H - 1
a - 1
l - 1
m - 1
? - 1
Теперь проделаем то же с каждой из частей таблицы: вставим линию между строками так, чтобы разделить каждую из частей. Продолжим этот процесс, пока все буквы не окажутся разделенными одна от другой. Результирующее дерево Шеннона-Фано представлено в таблице 11.3.
Таблица 11.3. Завершенное дерево Шеннона-Фано Символ Количество появлений
Я намеренно изобразил разделительные линии различными по длине, чтобы разделительная линия 1 была самой длинной, разделительная линия 2 немного короче и так далее, вплоть до самой короткой разделительной линии 6. Этот подход обусловлен тем, что разделительные линии образуют повернутое на 90° бинарное дерево (чтобы убедиться в этом, поверните таблицу на 90° против часовой стрелки). Разделительная линия 1 является корневым узлом дерева, разделительные линии 2 - двумя его дочерними узлами и т.д. Символы образуют листья дерева. Результирующее дерево в обычной ориентации показано на рис. 11.1
Рисунок 11.1. Дерево Шеннона-Фано
Читать дальше