Отыскание произвольного элемента в сортирующем дереве
Теперь осталось решить первоначальную проблему: эффективно найти элемент в сортирующем дереве. Эта проблема кажется неразрешимой - сортирующее дерево не содержит никакой вспомогательной информации, поскольку оно было разработано лишь для обеспечения эффективного поиска наибольшего элемента. Возврат к сбалансированному дереву двоичного поиска (при использовании которого для поиска элемента за время, пропорциональное O(log(n)), можно применить стандартный алгоритм поиска) кажется почти неизбежным.
Однако вместо этого мы создадим так называемое косвенное сортирующее дерево (indirect heap). При добавлении элемента в очередь по приоритету, управление этим элементом передается очереди. Взамен мы получаем дескриптор (handle). Дескриптор - это значение, по которому очередь "узнает" о добавлении элемента. Если хотите, дескриптор является косвенной ссылкой на реальный элемент в сортирующем дереве.
Итак, чтобы удалить элемент из очереди по приоритету, мы передаем очереди дескриптор этого элемента. Очередь использует этот дескриптор для выяснения позиции элемента в сортирующем дереве, а затем удаляет его, как было описано ранее.
Для изменения приоритета элемента мы просто изменяем значение приоритета элемента и сообщаем очереди о том, что произошло, передавая ей дескриптор элемента. Затем очередь может восстановить свойство пирамидальное™. Операция исключения из очереди работает так же, как и ранее (дескриптор элемента не нужно передавать, поскольку очередь сама определит наибольший элемент). Однако очередь уничтожит дескриптор возвращенного элемента, поскольку он больше не присутствует в очереди. Если элементы являются записями или объектами, дескриптор данного элемента можно хранить внутри самого элемента наряду с приоритетом и другими полями.
В рамках операционной системы дескриптор, который, как правило, представляет собой своего рода замаскированный указатель, обычно имеет тип длинного целого. В рассматриваемой реализации мы используем всего лишь нетипизированный указатель.
Реализация расширенной очереди по приоритету
С точки зрения пользователя очереди по приоритету новый интерфейс лишь немногим сложнее рассмотренного ранее. Код интерфейса класса расширенной очереди по приоритету TtdPriorityQueueEx приведен в листинге 9.9.
Листинг 9.9. Интерфейс класса TtdPriorityQueueEx
type
TtdPQHandle = pointer;
TtdPriorityQueueEx = class private
FCompare : TtdCompareFunc;
FHandles : pointer;
FList : TList;
FName : TtdNameString;
protected
function pqGetCount : integer;
procedure pqError(aErrorCode : integer;
const aMethodName : TtdNameString);
procedure pqBubbleUp(aHandle : TtdPQHandle);
procedure pqTrickleDown(aHandle : TtdPQHandle);
public
constructor Create(aCompare : TtdCompareFunc);
destructor Destroy; override;
procedure ChangePriority(aHandle : TtdPQHandle);
procedure Clear;
function Dequeue : pointer;
function Enqueue(alt em : pointer): TtdPQHandle;
function Examine : pointer;
function IsEmpty : boolean;
function Remove(aHandle : TtdPQHandle): pointer;
property Count : integer read pqGetCount;
property Name : TtdNameString read FName write FName;
end;
Как видите, единственное реальное различие между этим классом и классом TtdPriorityQueue состоит в наличии методов Remove и ChangePriority и в том, что метод Enqueue возвращает дескриптор.
Так как же реализован этот интерфейс? Внутренне очередь, как обычно, содержит сортирующее дерево, но на этот раз она должна поддерживать определенную дополнительную информацию, чтобы иметь возможность отслеживать позицию каждого элемента в сортирующем дереве. Кроме того, очередь должна идентифицировать каждый элемент дескриптором, чтобы поиск элемента по заданному дескриптору выполнялся быстро и эффективно - теоретически быстрее, чем в дереве двоичного поиска, где время поиска определяется соотношением O(log(n)).
Поэтому мы сделаем следующее: когда пользователь будет ставить элемент в очередь, мы будем добавлять элемент в связный список. Это будет сопряжено с определением и использованием узла и, по меньшей мере, двух указателей: указателя самого этого элемента и указателя следующего элемента, хотя по причинам, которые станут понятны несколько позже, мы будем использовать двухсвязный список и поэтому нам потребуется также и предыдущий указатель. Передаваемый нами обратно дескриптор элемента будет адресом узла. Теперь наступает важный момент. Узел хранит также целочисленное значение - позицию элемента в массиве, посредством которого реализовано сортирующее дерево. Сортирующее дерево не хранит сами элементы, а только их дескрипторы (т.е. узлы связного списка). Каждый раз, когда для выполнения сравнения ему нужно будет обратиться к самому элементу, оно будет разыменовывать дескриптор.
Читать дальше