Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации

Здесь есть возможность читать онлайн «Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая околокомпьтерная литература, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Предсказываем тренды. С Rattle и R в мир моделей классификации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Предсказываем тренды. С Rattle и R в мир моделей классификации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных – котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты».Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки.Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.

Предсказываем тренды. С Rattle и R в мир моделей классификации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Предсказываем тренды. С Rattle и R в мир моделей классификации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Также важно понять, что R 2 зависит от изменения в результате. Используя интерпретацию, что эта статистика измеряет соотношение дисперсии, объясненной моделью, нужно помнить, что знаменатель этого отношения вычисляется с использованием дисперсии выборки результата. Например, предположим, что у результата набора тестов есть дисперсия 4.2. Если бы RMSE предсказательной модели равнялись 1, то R 2 составил бы примерно 76%. Если бы у нас был другой набор тестов с точно тем же самым RMSE, но результатами теста было меньше переменной, то результаты выглядели бы хуже. Например, если бы дисперсия набора тестов равнялась 3, то R 2 составил бы 67%.

В некоторых случаях цель модели просто состоит в упорядочении новых наблюдений. В этом случае определятся возможность модели, а не ее предсказательная точность. Для этого определяется порядковая корреляция между наблюдаемыми и ожидаемыми значениями, и оценка производится с помощью более соответствующей метрики. Порядковая корреляция берет ранги наблюдаемого значения результата (в противоположность их фактическим значениям) и оценивает, как близко это к рангам предсказаний модели. Для вычисления этого значения получают ранги наблюдаемых и предсказанных результатов, и вычисляют коэффициент корреляции между этими рангами. Эта метрика обычно известна как порядковая корреляция Спирмена.

4.2. Линейные регрессионные модели

Когда мы говорим о линейных моделях, то имеется в виду, что модели являются линейными в параметрах .

При оценке моделей оцениваются их параметры так, чтобы сумма квадратов ошибок или функция суммы квадратов ошибок были минимизированы. Среднеквадратичная ошибка (MSE) может быть разделена на компоненты не уменьшаемого изменения, смещения модели и дисперсии модели.

Явное преимущество линейных моделей состоит в легкости их толкования.

Другое преимущество этих видов моделей состоит в том, что их математический характер позволяет вычислить стандартные ошибки коэффициентов при условии, что делаются определенные предположения о распределениях остатков модели. Затем эти стандартные ошибки могут использоваться для оценки статистической зн ачимости каждого предиктора в модели.

В то время как линейные модели типа регрессии легко поддаются толкованию, их использование может быть ограничено. Во-первых, эти модели состоятельны, если отношение между предикторами и откликом движется вдоль гиперплоскости. Например, при одном предикторе модель будет состоятельной, если отношение между предиктором и откликом двигалось вдоль прямой линии. С большим количеством предикторов отношение должно двигаться близко к плоской гиперплоскости. Если есть криволинейное отношение между предикторами и откликом (например, такое как квадратное, кубическое взаимодействия среди предикторов), то линейные регрессионные модели могут быть расширены с дополнительными предикторами, которые являются функциями исходных предикторов в попытке получить эти отношения. Однако нелинейные отношения между предикторами и откликом не могут быть соответственно получены этими моделями.

4.3. Нелинейные регрессионные модели

Многие из линейных моделей могут быть адаптированы к нелинейным трендам в данных, вручную прибавляя параметры модели (например, квадраты параметров). Однако для этого необходимо знать специфический характер нелинейности в данных.

Есть многочисленные регрессионные модели, которые по своей сути не линейны. При использовании этих моделей точная форма нелинейности не должна быть известна явно или специфицироваться до обучения модели. Рассмотрим несколько таких моделей: нейронные сети, машины опорных векторов (SVM) и K-ближайшие соседи (KNN) . Основанные на дереве модели также не линейны. Из-за их популярности рассмотрим отдельно.

4.3.1. Нейронные сети

Нейронные сети – это мощные нелинейные методы регрессии, вдохновленные теориями о работе интеллекта. Как частные наименьшие квадраты (PLS), результат моделируется посредством многих не наблюдаемых переменных (названными скрытыми переменными или скрытыми модулями здесь). Эти скрытые модули – линейные комбинации исходных предикторов.

При обработке этой модели как нелинейной регрессионной модели обычно оптимизируются параметры для минимизации суммы квадратов остатков. Это может вызвать вычислительную проблему, связанную с оптимизацией (вспомним, что нет никаких ограничений на параметры этой комплексной нелинейной модели). Параметры обычно инициируются случайным значением, а затем используются специализированные алгоритмы для решения уравнения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Представляем Вашему вниманию похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Александр Фоменко
libcat.ru: книга без обложки
Александр Розов
Александр Лопатин - Маленькая дверь в новый мир
Александр Лопатин
Отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Обсуждение, отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x