Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации

Здесь есть возможность читать онлайн «Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая околокомпьтерная литература, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Предсказываем тренды. С Rattle и R в мир моделей классификации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Предсказываем тренды. С Rattle и R в мир моделей классификации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных – котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты».Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки.Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.

Предсказываем тренды. С Rattle и R в мир моделей классификации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Предсказываем тренды. С Rattle и R в мир моделей классификации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Альтернативно, данные могут быть разделены на основе значения предиктора. Например, на максимальной выборке несходства . Несходство между двумя выборками может быть измерено многими способами. Самый простой метод использует расстояние между значением предиктора для двух наблюдений. Если расстояние небольшое, точки находятся в непосредственной близости. Большие расстояния между точками указывают на несходство. Чтобы использовать несходство в качестве инструмента для разделения данных, предположим, что тестовый набор создан из единственной выборки. Можно вычислить несходство между этой начальной выборкой и освобожденными выборками. Освобожденная выборка, которая является самой несходной, затем была бы добавлена к тестовому набору. Чтобы создать больше наборов тестовых наблюдений, необходим метод для определения несходства между группами точек (то есть, два в наборе тестов и освобожденных точках).

3.4. Методы ресемплирования

Методы ресемплирования для оценки результативности модели работают так: подмножество наблюдений используется для подгонки модели, и остающиеся выборки используются, чтобы оценить эффективность модели. Этот процесс повторен многократно, и результаты суммируются и выводятся итогом. Разности в методах обычно центрируются вокруг метода, по которому сделаны выборки из набора данных. Рассмотрим главные виды ресемплирования в следующих немногих подразделах.

3.4.1. k-кратная кросс-проверка

Выборки в произвольном порядке разделены в k множеств примерно равного размера. Производится подгонка модели на всех выборках кроме первого подмножества (названного первой сверткой ). Вне-выборки выполняются предсказания этой моделью и используются для оценки критерии качества результата. Первое подмножество возвращается в набор данных обучения, и процедура повторяется со вторым подмножеством вне-выборки и так далее. В итоге оценивается K- передискретизованная результативность (обычно со средней и стандартной ошибкой), а используются выяснения отношений между настраиваемыми параметрами и формулой модели.

Небольшая разновидность этого метода выбирает k- разделов способом, который делает свертки сбалансированными относительно результата. Стратифицированная случайная выборка, обсужденная ранее, создает баланс относительно результата.

Другая версия, перекрестная проверка «пропуск одного» (LOOCV), является частным случаем, где k является числом наблюдений. В этом случае, так как только одна вне-выборка берется за один раз, заключительная результативность вычислена от k предсказаний от вне-выборок. Дополнительно, повторная k- кратная перекрестная проверки тиражирует процедуру многократно. Например, если бы 10-кратная перекрестная проверка была повторена пять раз, 50 различных вне-выборок использовались бы для оценки эффективности модели.

Выбор k обычно равняется 5 или 10, но нет никакого формального правила. Поскольку k становится больше, разница в размерах между набором данных обучения и подмножествами ресемплирования становится меньшей. Когда эта разность уменьшается, смещение метода становится меньшим (то есть, смещение меньше для k = 10, чем для k = 5). В этом контексте смещение – разность между оцененными и истинными значениями результативности.

Другой важный аспект метода ресемплирования – это неопределенность (то есть, дисперсия или шум). Несмещенный метод может оценивать корректное значение (например, истинная теоретическая результативность), но может привести к высокой неопределенности. Это означает, что повторение процедуры ресемплирования может произвести совсем другое значение (но сделанная достаточно много раз, она оценит истинное значение). k- кратная перекрестная проверка обычно имеет высокую дисперсию по сравнению с другими методами и, по этой причине, не может быть привлекательной. Нужно сказать, что для больших наборов данных обучения, потенциальные проблемы с дисперсией и смещением становятся незначительными.

С практической точки зрения большее значение k в вычислительном отношении обременительно. В экстремуме LOOCV больше всего в вычислительном отношении накладно, потому что требуется много подгонок модели как точки данных, и каждая подгонка модели использует подмножество, которое почти равно размеру набора данных обучения.

3.4.2. Повторные разделения для обучения/тестирования

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Представляем Вашему вниманию похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Александр Фоменко
libcat.ru: книга без обложки
Александр Розов
Александр Лопатин - Маленькая дверь в новый мир
Александр Лопатин
Отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Обсуждение, отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x