Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации

Здесь есть возможность читать онлайн «Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая околокомпьтерная литература, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Предсказываем тренды. С Rattle и R в мир моделей классификации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Предсказываем тренды. С Rattle и R в мир моделей классификации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных – котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты».Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки.Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.

Предсказываем тренды. С Rattle и R в мир моделей классификации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Предсказываем тренды. С Rattle и R в мир моделей классификации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как только множество кандидатов значений параметра было выбрано, то следует получить правдоподобные оценки результативности модели. Результативность вне-выборки суммируется в профиль результативности, который затем используется для определения заключительных настраиваемых параметров. Затем создаем заключительную модель со всеми учебными данными, используя выбранные настраивающие параметры.

При построении моделей доступны подходы, такие как генетические алгоритмы или симплексные методы поиска, которые могут найти оптимальные настраиваемые параметры. Эти процедуры алгоритмически определяют соответствующее значение для настройки параметров и выполняют итерации, пока они не достигают установок параметров с оптимальной результативностью. Эти методы имеют тенденцию оценивать большое количество моделей кандидата и могут превосходить определенное множество настраиваемых параметров, если результативность модели может быть эффективно вычислена.

Как ранее обсуждалось, очевидный коэффициент ошибок может произвести чрезвычайно оптимистические оценки результативности. Лучшим является подход, который проверяет модель на выборках, не использованных для обучения.

Оценивая модель на тестовом наборе, размер набора тестов, возможно, должен быть большим.

Альтернативный подход к оценке модели на единственном тестовом наборе состоит в ресемплирования набора данных обучения. Этот процесс использует несколько измененных версий набора данных обучения, чтобы создать многоуровневые модели и затем использует статистические методы, чтобы обеспечить честные оценки результативности модели (то есть, не чрезмерно оптимистичные).

3.3. Разделение данных

Теперь, когда мы обрисовали в общих чертах процедуру для поиска оптимальных настраиваемых параметров, вернемся к обсуждению основы процесса: разделение данных.

Несколько общих шагов в создании модели:

– предварительная обработка данных предиктора;

– оценка параметров модели;

– выбор предикторов для модели;

– оценка результативности модели;

– правила предсказания класса точной настройки (через кривые ROC, и т.д.).

Одно из первых решений при моделировании, которое следует принять, какие наборы данных или их части будут использоваться для оценки результативности. Идеально, модель должна быть оценена на выборках, которые не использовались при создании или построении модели, так, чтобы они обеспечили несмещенную оценку эффективности модели. « Учебный » набор данных – общий термин для наблюдений, используемых для создания модели, в то время как набор данных « теста » или « проверки » используется для определения результативности.

Из литературы известно, что проверка, использующая единственный набор, может дать плохое решение. Могут использоваться методы ресемплирования, такие как кросс-проверка, для соответствующей оценки результативности модели, используя набор данных обучения. Хотя методы ресемплирования могут быть неправильно употреблены, они часто оценивают результативность точнее единственного набора, потому что они оценивают много вариантов данных. Если тестовый набор считается необходимым, то есть несколько методов для разделения выборки.

В большинстве случаев желательно сделать наборы данных обучения и набор данных тестирования настолько гомогенными насколько возможно. Можно использовать методы случайных выборок для создания подобных наборов данных.

Самый простой способ разделить данные на набор данных обучения и тестовый набор состоит в том, чтобы взять простую случайную выборку. Это можно делать, если известно, что отношения классов примерно равны в обучающей и тестовой выборке. Когда у одного класса есть непропорционально большая частота по сравнению с другим, есть шанс, что распределение результатов может существенно отличаться между наборами данных обучения и тестовым набором.

Чтобы учесть результат при разделении данных, стратифицированная случайная выборка применяет случайную выборку в пределах подгрупп (таких как классы). Таким образом, получим более правдоподобную выборку, которая будет соответствовать распределению результата. Когда результат – число, подобная стратегия может использоваться; числовые значения разделены в подобные группы (например, минимум, среднее и максимум), и рандомизация выполняется в пределах этих групп.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Представляем Вашему вниманию похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Александр Фоменко
libcat.ru: книга без обложки
Александр Розов
Александр Лопатин - Маленькая дверь в новый мир
Александр Лопатин
Отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Обсуждение, отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x