Вернемся к представлению знаний. Как справедливо отмечает Дж. Люгер, задача любой схемы представления заключается в том, чтобы зафиксировать специфику области определения задачи и сделать эту информацию доступной для механизма решения проблемы. Язык представления должен позволять программисту выражать знания, необходимые для решения задачи. Абстрагирование, т.е. представление только той информации, которая необходима для достижения заданной цели, является необходимым средством управления сложными процессами. Конечные программы должны быть рациональными в вычислительном отношении. Выразительностьи эффективностьявляются взаимосвязанными характеристиками оценки языков представления знаний. Многие достаточно выразительные средства представления в одних классах задачах совсем неэффективны в других. Разумный компромисс между эффективностью и выразительностью – сложная задача для разработчиков интеллектуальных систем. По существу, способ представления знания должен обеспечить естественную структуру выражения знания, позволяющую решить проблему. Способ представления должен сделать это знание доступным компьютеру и помочь программисту описать его структуру [264, стр. 58-59]. Учитывая наши выводы о неадекватности исчисления предикатов для решения многих задач ИИ, мы считаем, что разработка новых представлений в виде миварного информационного подхода является закономерным развитием теории ИИ в 21 веке.
Семантические сети как альтернатива исчислению предикатов.Особое внимание необходимо уделить передаче сложных семантических значений. У Дж. Люгера подчеркнуто, что во многих областях ИИ решение задачи требует использования высокоструктурированных взаимосвязанных знаний [264, стр. 63]. Для описания предмета реального мира необходимо не только перечислить его составные части, но и указать способ соединения и взаимодействия этих частей. Структурное представление предметов используется во многих задачах. Кроме того, семантические отношения необходимы для описания причинных связей между событиями. Да, в обоих этих случаях взаимосвязи и взаимоотношения могут быть описаны группой предикатов, но для программиста, имеющего дело со сложными понятиями и стремящегося дать устойчивое описание процессов в программе, необходимо некоторое высокоуровневое представление структуры процесса. Предикатное описание можно представить графически, использую для отображения предикатов, определяющих отношения, дуги или связи графа. Такое описание, называемое семантической сетью, является фундаментальной методикой представления семантического значения. Поскольку отношения явно выражены связями графа, алгоритм рассуждений о предметной области может строить соответствующие ассоциации просто следуя по связям, что значительно эффективнее, чем утомительный и исчерпывающий поиск в базе данных, содержащей описания на языке предикатов [264, стр. 64].
Как видим, принцип адекватности представления знаний здесь очень хорошо работает: при одинаковой выразительности семантических сетей и предикатов эффективность поиска явно лучше для семантических сетей с их явным описанием связей. Таким образом, нам остается согласиться с Дж. Люгером в том, что "теория графов эффективно и естественно выражает сложные семантические знания. Кроме того, она позволяет описывать структурную организацию базы знаний. Семантические сети – это достойная альтернатива исчислению предикатов" [264, стр. 64].
Интеллектуальная система должна знать не только сам предмет, но и знать, что она знает этот предмет. Следовательно, рассуждения на метауровне также играют огромное значение в области ИИ. У Дж. Люгера отмечено, что эта "…осведомленность о своих знаниях…" составляет более высокий уровень знаний, называемых метазнаниями и необходимых для проектирования и адекватного описания интеллектуальных систем. Метазнания важны для способности обучаться на примерах, опыте или понимать инструкции высокого уровня, что и отличает их от "жесткого" программирования. Методы представления знаний, разработанные для программирования задач ИИ, обеспечивают возможность адаптации и модификации, так необходимую для обучающихся систем, а также формируют основу для других исследований с символьными вычислениями [264, стр. 65].
2.4. Преимущества миварного подхода перед семантическими сетями и продукциями
Кроме того, с точки зрения обоснования преимуществ и перспективности миварного подхода важно следующее замечание Дж. Люгера: "Решение задачи искусственного интеллекта можно свести к выбору представления среди возможных альтернатив. Выбор подходящего представления весьма важен для разработчиков компьютерных программ, обеспечивающих решение задач искусственного интеллекта. Несмотря на большое разнообразие языков представления, используемых в искусственном интеллекте, все они должны удовлетворять общим требованиям выразительности, эффективности и правильности дедуктивных выводов. Выбор и оценка языков представлений – весьма важная задача как для исследователей, так и для программистов [264, стр. 65]. Как показано в наших работах, выразительность миварного подхода ни в чем не уступает ни исчислениям предикатов, ни семантическим сетям, ни другим известным формализмам в области ИИ. Более того, изменяющееся многомерное миварное информационное пространство позволяет в едином формализме описать и совместить все указанные формализмы, включая исчисление предикатов и семантические сети с онтологиями. С точки зрения семантических сетей, миварное пространство позволяет отобразить такую сеть в многомерном пространстве, что только увеличивает выразительность и позволяет добавить новые связи за счет многомерности. С онтологиями происходит аналогично семантическим сетям. Даже наиболее общую модель данных "сущность-связь" можно легко представить в миварном пространстве, примеры которого подробно описаны в первой монографии Варламова О.О. [72]. Про то, что исчисление предикатов имеет равные выразительные способности с семантическими сетями, было сказано ранее, в том числе и у Дж. Люгера. Следовательно, по выразительности миварный подход превосходит возможности всех традиционных формализмов, включая семантические сети и модель данных "сущность-связь".
Читать дальше
Конец ознакомительного отрывка
Купить книгу