4. Трудности в тестировании. Обоснование корректности работы любой большой компьютерной системы достаточно трудоемко. Проверять ЭС особенно тяжело, и это серьезная проблема, т.к. технологии ЭС применяются для разных критичных задач.
5. Ограниченные возможности обучения на опыте. ЭС делаются "вручную" и их производительность возрастает только после вмешательства программистов. Это заставляет серьезно усомниться в разумности таких систем [264, стр. 46].
Отметим, что в настоящее время ЭС нашли самое широкое применение в специализированных областях, но перестали быть передовым краем исследований в области ИИ, т.к. о них сообщается на большом количестве научных конференций. Многие ученые идут в своих исследованиях дальше, и теория ЭС продолжает развиваться в том числе и на основе миварного подхода, который позволяет устранить указанные ограничения и выйти на новый уровень интеллектуальности ЭС. Вместе с тем, именно широкое использование ЭС дает надежные основания для утверждения, что ИИ уже создан и широко используется людьми в своей повседневной деятельности. Конечно, это не означает, что ЭС и системы ИИ на их основе смогли превзойти уровень интеллектуальности человека, т.е. в другом понимании термина ИИ, как системы равной или превосходящей возможности человека, конечно же, еще достаточно далеко до создания такого ИИ.
2.2. Миварный подход и понимание естественных языков
Следующей проблемой ИИ является понимание естественных языков и семантическое моделирование. Здесь мы поддерживаем описание и выводы Дж. Люгера, которые заслуживают подробного цитирования: "Способность применять и понимать естественный язык является фундаментальным аспектом человеческого интеллекта, а его успешная автоматизация привела бы к неизмеримой эффективности самих компьютеров. Многие усилия затрачены на написание программ, понимающих естественный язык. Хотя такие программы и достигли успеха в ограниченных контекстах, системы, использующие натуральные языки с гибкостью и общностью, характерной для человеческой речи, лежат за пределами сегодняшних методологий" [264, стр. 46]. Усилим это высказывание: известные научные подходы к проблеме понимания естественного языка даже не рассматривают эту проблему в полном объеме, сразу ограничивая область и свои возможности. Т.е. выражение "за пределами сегодняшних методологий" означает, что на текущий момент даже и подходов к общему решению этой проблемы пока нет. И этому есть несколько объяснений, включая и приведенное выше пояснение о том, что многие современные ученые решают "игрушечные" задачи, даже не предполагая решение реальных, к числу которых и относится проблема понимания естественного языка.
Мы поддерживаем следующие рассуждения Дж. Люгера: "…понимание естественного языка включает куда больше, чем разбор предложений на индивидуальные части речи и поиск значений слов в словаре. Оно базируется на обширном фоновом знании о предмете беседы и идиомах, используемых в этой области, так же, как и на способности применять общее контекстуальное знание для понимания недомолвок и неясностей, присущих человеческой речи. Задача сбора и организации этого фонового знания, чтобы его можно было применить к осмысливанию языка, составляет значительную проблему в автоматизации понимания естественного языка. Разработано множество методов структурирования семантических значений. Но, из-за огромных объемов знаний, требуемых для понимания естественного языка, большая часть работы ведется в хорошо понимаемых специализированных проблемных областях. Методики представления известных специализированных программ слишком просты, чтобы передать семантическую организацию более богатых и сложных предметных областей. Основная часть текущих работ в этой области направлена на поиск формализмов представления, которые должны быть достаточно общими, чтобы применяться в широком круге приложений и уметь адаптироваться к специфичной структуре заданной области. Множество разнообразных методик, большинство из которых являются развитием или модификацией семантических сетей, исследуются с этой целью и используются при разработке программ, способных понимать естественный язык в ограниченных, но достаточно интересных предметных областях. Есть стохастические модели, описывающие совместное использование слов в языке, которые применяются для характеристики как синтаксиса, так и семантики. Далее следует принципиально важный вывод: полное понимание языка на вычислительной основе все же остается далеко за пределами современных возможностей" [264, стр. 47].
Читать дальше
Конец ознакомительного отрывка
Купить книгу