С нашей точки зрения, существует вполне логичное обоснование таких провалов и ограничений в области ИИ. Главная причина в том, что не решаются реальные задачи, а делаются попытки приспособить уже известные "игрушечные" методы к разным предметным областям. Проблема естественного языка объективно является сложной, более того, вполне возможно, что его вообще нельзя формализовать, и надо использовать принципиально другие подходы. Вместо этого постоянно делаются попытки формализовать естественный язык, которые порождают в ограниченных контекстах узкоспециализированные описания некоторых предметных областей. Здесь будет уместно привести аналогию с животными: многие люди ошибочно считают, что собаки понимают человеческий язык… Есть даже шутка про студентов на экзаменах, которые все понимают, но сказать, как и собаки, не могут. Конечно же, дрессированные собаки выполняют множество команд своего хозяина, но… Дальше и начинается самое интересное. Ведь эти команды многие хозяева подают не только голосом, но всякими жестами, свистками и т.п. Получаем вполне конкретный набор команд, который собака может распознать и выполнить. Нечто подобное может выполнять в ограниченных контекстах узкоспециализированная программа для некоторых предметных областей. Скажем прямо: такой подход "снизу вверх" вообще не направлен на ПОНИМАНИЕ языка, а ведет только к пониманию команд, т.е. обычного формализованного языка. При таком ошибочном подходе, можно говорить, что интеллектуальный телевизор понимает команды с пульта управления…
Для понимания человеческого языка надо исследовать совсем другие научные подходы, которые принципиально отличаются от современных семантических сетей, онтологий и т.п. формализмов.
В качестве оправдания неудач и пояснения сложности проблемы понимания естественного языка можно сказать следующее. Если взять для примера животный мир, то достаточно многие его представители явно обладают интеллектом и умеют решать различные задачи: поиск пищи, распознавание образов, взаимодействие, нахождение пути домой и т.п. В классическом определении интеллекта вообще указано, что это высшая стадия для животных, включая собак, кошек, дельфинов и т.п. Многие хозяева считают своих питомцев интеллектуальными. Однако человеческий язык во всей своей сложности используется только людьми, и это одно из наиболее важных отличий нас от животных. Мы являемся сторонниками такой точки зрения: понимание естественного языка – это задача одинаковая по сложности с самим созданием ИИ в его самом сложном смысле, как создание автоматической системы равной или превышающей человеческий индивидуальный интеллект. Поэтому упрощенные "игрушечные" методы никогда не приведут к его решению. У Дж. Люгера выше именно это явно и звучит: понимание человеческой речи лежит за пределами сегодняшних методологий научных исследований. Надо разрабатывать новые подходы и методы.
Одним из таких подходов является миварный подход с его технологиями накопления данных и обработки информации в едином миварном информационном пространстве. Для понимания языка надо собрать и поддерживать в актуальном состоянии огромную базу данных фактов и такое же большое количество правил, которые позволяют выявлять нюансы смысла разных понятий в различных ситуациях. У нас пока не было подробных работ на эту тему, но во время дискуссий и обсуждений мы излагали следующий описанный ниже подход, получивший понимание и поддержку.
Итак, подход можно показать на следующей аналогии: весь язык представляет собой огромный горный массив, вершинами которого являются отдельные слова (рисунки 2, 3, 4).
Рисунок 2 – Вид с Эльбруса на Главный Кавказский хребет.
Высота 4800 м
Рисунок 3 – Вид на вершины Эльбруса (5642 м.)
с высоты 4800 м
Рисунок 4 – Долина реки Баксан на уровне 2100 метров
Тогда, слово – это вершина горы, а вся гора сама по себе и является контекстом. Если кто-то больше любит море или океан, то вместо гор можно использовать айсберги, хотя система гор все же, на наш взгляд, более адекватна предлагаемой модели. Итак, в процессе обучения человек "выращивает" эти горы у себя в голове, а общается потом внешне только словами, как бы перепрыгивая с вершины на вершину или связывая эти вершины огромными длинными виртуальными мостами. В процессе своего взросления и обучения человек "выращивает новые горы", создавая целые системы таких гор, но на основе общих здравых подходов и признаков. Высота каждой такой горы превышает, допустим, стоэтажный дом. Эти этажи образно соответствуют уровням абстракции в описаниях слов и языковых моделей. Для того чтобы восстановить в компьютере такую горную систему надо сделать ее полноразмерный математический макет. Такой макет можно делать, спускаясь этаж за этажом с вершины горы до ее основания и переходя на другую гору через долины… Современные методы семантической обработки позволяют сделать, условно говоря, только двух- трехэтажную по высоте модель такой горной смысловой языковой системы. Вот и получаем принципиальное ограничение: надо наращивать в высоту по уровням абстракции наши языковые модели, а мы остановились на втором этаже семантики и даже не собираемся двигаться далее. Спасибо онтологиям?
Читать дальше
Конец ознакомительного отрывка
Купить книгу