Как посредник в информационных потоках MasterCard занимает весьма выгодное положение для сбора данных и получения из них выгоды. Только представьте себе будущее, в котором компании по выпуску платежных карт откажутся от своих комиссий по операциям и будут обрабатывать их бесплатно в обмен на доступ к большему количеству данных, чтобы получать доход от продажи еще более сложной аналитики, выполненной на их основе.
Во вторую группу входят компании, имеющие знания или технологии. MasterCard решила делать все собственными силами. Некоторые не могут сделать окончательный выбор, но часть компаний все же обращаются к специалистам. Например, консалтинговая компания Accenture сотрудничает с компаниями во многих отраслях промышленности для развертывания передовых технологий в области беспроводных датчиков и анализа собираемых ими данных. В 2005 году в ходе пилотного проекта в Сент-Луисе (штат Миссури) в десятке общественных автобусов были размещены беспроводные датчики, контролирующие работу двигателя для прогнозирования поломок и определения оптимального времени для регулярного техобслуживания. Один только вывод, что город может отсрочить плановую замену деталей с пробега в 200–250 тысяч километров до 280 тысяч километров, сэкономил 600 000 долларов на всем автопарке. [118] Консалтинговая компания Accenture и город Сент-Луис (штат Миссури): интервью Кукьеру (февраль 2007 года).
При этом именно клиент, а не консалтинговая компания собрал плоды ценности данных.
В сфере медицинских данных мы видим поразительный пример того, как внешние технологические компании могут предоставлять полезные услуги. Вашингтонский госпитальный центр в сотрудничестве с Microsoft Research проанализировал свои анонимные медицинские записи (демографические данные пациентов, анализы, диагностика, лечение и многое другое) за последние несколько лет, чтобы узнать, как снизить частоту повторных госпитализаций и инфекционных заболеваний. Они составляют львиную долю расходов на здравоохранение, поэтому любое снижение их стоимости означало бы огромную экономию.
Методика позволила выявить несколько удивительных корреляций. Одним из результатов был список всех условий, которые увеличивали вероятность того, что выписанный пациент поступит на повторную госпитализацию в течение месяца. Некоторые из этих условий хорошо известны и не имеют простого решения. Так, пациент с застойной сердечной недостаточностью наверняка вернется, поскольку это заболевание трудно поддается лечению. Система выявила еще один неожиданный, но надежный прогностический фактор — психическое состояние пациента. Вероятность того, что человек будет повторно госпитализирован в течение месяца, заметно увеличивалась, если среди исходных жалоб пациента были слова «депрессия» и пр., что указывало на психическое расстройство.
Хотя эта корреляция ничего не говорит о причинности, она предполагает, что надлежащая психологическая помощь пациенту после выписки благотворно скажется и на его физическом здоровье. Это открытие может улучшить качество ухода, уменьшить количество повторных госпитализаций и снизить расходы на медицинское обслуживание. Данная корреляция была выявлена компьютером путем просеивания огромной базы данных, но человеку вряд ли удалось бы ее выявить самостоятельно. Корпорация Microsoft не вмешивалась в управление данными больницы. У нее не было гениальной идеи по их использованию. Да этого и не требовалось. Microsoft просто предложила правильный инструмент — свое программное обеспечение Amalga, чтобы извлечь ценную информацию.
Компании, компетентные в области больших данных, играют важную роль в цепочке создания ценности информации. Twitter, LinkedIn, Foursquare и другие компании имеют горы данных, которые нуждаются в обработке. Компании старого типа (такие как Ford и BP) тоже буквально утопают в данных, по мере того как все больше аспектов их деятельности и продуктов датифицируется. Как держатели данных они полагаются на специалистов в том, чтобы извлечь из них выгоду. Но, несмотря на престиж и солидные названия должностей в духе «ниндзя данных», работа технических экспертов не всегда так заманчива, как может показаться. Они трудятся в алмазных копях больших данных, получая при этом внушительную зарплату. Но драгоценные камни достаются тем, кто владеет данными.
Третья группа — это компании и частные лица, которые мыслят категориями больших данных. Их сила в том, чтобы видеть возможности раньше других, даже если у них нет навыков и данных на реализацию. Возможно, именно нехватка этих ресурсов позволяет им взглянуть на ситуацию со стороны. Их разум не обременен стандартными ограничениями, и они видят то, чего можно достичь, пусть это практически трудноосуществимо.
Читать дальше
Конец ознакомительного отрывка
Купить книгу