Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Здесь есть возможность читать онлайн «Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2014, ISBN: 2014, Издательство: Манн, Иванов и Фербер, Жанр: Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

С появлением новой науки открылась удивительная возможность с точностью предсказывать, что произойдет в будущем в самых разных областях жизни. Большие данные — это наша растущая способность обрабатывать огромные массивы информации, мгновенно их анализировать и получать порой совершенно неожиданные выводы. По какому цвету покраски можно судить, что подержанный автомобиль находится в отличном состоянии? Как чиновники Нью-Йорка определяют наиболее опасные люки, прежде чем они взорвутся? И как с помощью поисковой системы Google удалось предсказать распространение вспышки гриппа H1N1? Ключ к ответу на эти и многие другие вопросы лежит в больших данных, которые в ближайшие годы в корне изменят наше представление о бизнесе, здоровье, политике, образовании и инновациях.

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

От малого к большему

Выборка — продукт эпохи ограниченной обработки информации. Тогда мир познавался через измерения, но инструментов для анализа собранных показателей не хватало. Теперь выборка стала пережитком того времени. Недостатки в подсчетах и сведении данных стали гораздо менее выраженными. Датчики, GPS-системы мобильных телефонов, действия на веб-страницах и Twitter пассивно собирают данные, а компьютеры могут с легкостью обрабатывать их.

Понятие выборки подразумевает возможность извлечь максимум пользы из минимума материалов, подтвердить крупнейшие открытия с помощью наименьшего количества данных. Теперь же, когда мы можем поставить себе на службу большие объемы данных, выборки утратили прежнюю значимость. Технические условия обработки данных резко изменились, но адаптация наших методов и мышления не поспевает за ней.

Давно известно, что цена выборки — утрата подробностей. И как бы мы ни старались не обращать внимания на этот факт, он становится все более очевидным. Есть случаи, когда выборки являются единственным решением. Однако во многих областях происходит переход от сбора небольшого количества данных до как можно большего, а если возможно, то и всего: «N = всё».

Используя подход « N = всё», мы можем глубоко изучить данные. Не то что с помощью выборки! Кроме того, уже упоминалось, что мы могли бы достичь 97%-ной точности, экстраполируя результаты на все население. В некоторых случаях погрешность в 3% вполне допустима, однако при этом теряются нюансы, точность и возможность ближе рассмотреть некоторые подгруппы. Нормальное распределение, пожалуй, нормально. Но нередко действительно интересные явления обнаруживаются в нюансах, которые невозможно в полной мере уловить с помощью выборки.

Вот почему служба Google Flu Trends полагается не на случайную выборку, а на исчерпывающий набор из миллиардов поисковых интернет-запросов в США. Используя все данные, а не выборку, можно повысить точность анализа настолько, чтобы прогнозировать распространенность какого-либо явления не то что в государстве или всей нации, а в конкретном городе. [31] Google Flu Trends: прогнозирование на уровне городов с 75%-ной точностью: Dugas et al. Google Flu Trends: Correlation with Emergency Department Influenza Rates and Crowding Metrics // CID Advanced Access. — January 8, 2012. Исходная система Farecast использовала выборку из 12 000 точек данных и хорошо справлялась со своими задачами. Но, добавив дополнительные данные, Орен Эциони улучшил качество прогнозирования. В итоге система Farecast стала учитывать все ценовые предложения на авиабилеты по каждому маршруту в течение всего года. «Это временные данные. Просто продолжайте собирать их — и со временем вы станете все лучше и лучше понимать их закономерности», — делится Эциони. [32] Эциони о временн ы х данных: интервью Кукьеру (октябрь 2011 года).

Таким образом, в большинстве случаев мы с удовольствием откажемся от упрощенного варианта (выборки) в пользу полного набора данных. При этом понадобятся достаточные мощности для обработки и хранения данных, передовые инструменты для их анализа, а также простой и доступный способ сбора данных. В прошлом каждый из этих элементов был головоломкой. Мы по-прежнему живем в мире ограниченных ресурсов, в котором все части головоломки имеют свою цену, но теперь их стоимость и сложность резко сократились. То, что раньше являлось компетенцией только крупнейших компаний, теперь доступно большинству.

Используя все данные, можно обнаружить закономерности, которые в противном случае затерялись бы на просторах информации. Так, мошенничество с кредитными картами можно обнаружить путем поиска нетипичного поведения. Единственный способ его определить — обработать все данные, а не выборку. В таком контексте наибольший интерес представляют резко отклоняющиеся значения, а их можно определить, только сравнив с массой обычных транзакций. В этом заключается проблема больших данных. А поскольку транзакции происходят мгновенно, анализировать нужно тоже в режиме реального времени.

Компания Xoom специализируется на международных денежных переводах и опирается на хорошо известные большие данные. Она анализирует все данные, связанные с транзакциями, которые находятся в обработке. Система подняла тревогу, заметив незначительное превышение среднего количества транзакций с использованием кредитных карт Discover Card в Нью-Джерси. «Система обнаружила закономерность там, где ее не должно быть», — пояснил Джон Кунце, президент компании Xoom. [33] Исполнительный директор компании Xoom: Rosenthal, Jonathan. Special report: International banking // The Economist. — May 19, 2012. — P. 7–8. Сами по себе транзакции выглядели вполне законно. Но оказалось, что они инициированы преступной группировкой, которая пыталась обмануть компанию. Обнаружить отклонения в поведении можно было, только изучив все данные, чего не сделаешь с помощью выборки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»

Представляем Вашему вниманию похожие книги на «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»

Обсуждение, отзывы о книге «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x