Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Здесь есть возможность читать онлайн «Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2014, ISBN: 2014, Издательство: Манн, Иванов и Фербер, Жанр: Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

С появлением новой науки открылась удивительная возможность с точностью предсказывать, что произойдет в будущем в самых разных областях жизни. Большие данные — это наша растущая способность обрабатывать огромные массивы информации, мгновенно их анализировать и получать порой совершенно неожиданные выводы. По какому цвету покраски можно судить, что подержанный автомобиль находится в отличном состоянии? Как чиновники Нью-Йорка определяют наиболее опасные люки, прежде чем они взорвутся? И как с помощью поисковой системы Google удалось предсказать распространение вспышки гриппа H1N1? Ключ к ответу на эти и многие другие вопросы лежит в больших данных, которые в ближайшие годы в корне изменят наше представление о бизнесе, здоровье, политике, образовании и инновациях.

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Проведение переписей — процесс дорогостоящий и трудоемкий. Король Вильгельм I не дожил до завершения книги Судного дня, составленной по его распоряжению. Между тем существовал лишь один способ избавиться от трудностей, сопряженных со сбором информации, — отказаться от него. В любом случае информация получалась не более чем приблизительной. Переписчики прекрасно понимали, что им не удастся все идеально подсчитать. Само название переписей — «ценз» [23] В Древнем Риме: перепись граждан с указанием имущества для определения их социально-политического, военного и податного положения. (англ. census ) — происходит от латинского термина censere , что означает «оценивать».

Более трехсот лет назад у британского галантерейщика по имени Джон Граунт появилась инновационная идея. Чтобы вывести общую численность населения Лондона во время бубонной чумы, он не стал подсчитывать отдельных лиц, а воспользовался другим способом. Сегодня мы бы назвали его статистикой. Новый подход давал весьма приблизительные результаты, зато показывал, что на основании небольшой выборки можно экстраполировать полезные знания об общей картине. Особое значение имеет то, как именно это делалось. Граунт просто масштабировал результаты своей выборки.

Его система стала известной, хотя позже и выяснилось, что расчеты могли быть объективными только по счастливой случайности. Из поколения в поколение метод выборки оставался далеко не безупречным. Итак, для переписи и подобных целей, связанных с большими данными, основной подход заключался в грубой попытке подсчитать все и вся.

Поскольку переписи были сложными, дорогостоящими и трудоемкими, они проводились лишь в редких случаях. Древние римляне делали это каждые пять лет, притом что население исчислялось десятками тысяч. А в Конституции США закреплено правило проводить переписи каждые десять лет, поскольку население растущей страны насчитывает миллионы. Но к концу XIX века даже это оказалось проблематичным. Возможности Бюро переписи населения не успевали за ростом данных.

Перепись 1880 года длилась целых восемь лет. Ее данные успели устареть еще до публикации результатов. По подсчетам, на подведение итогов переписи 1890 года требовалось 13 лет — смехотворный срок, не говоря уже о нарушении Конституции. В то же время распределение налогов и представительство в Конгрессе зависели от численности населения, поэтому крайне важно было своевременно получать точные данные.

Проблема, с которой столкнулось Бюро переписи населения США, напоминает трудности современных ученых и бизнесменов: поток данных стал непосильным. Объем собираемой информации превысил все возможности инструментов, используемых для ее обработки. Срочно требовались новые методы. В 1880-х годах ситуация оказалась настолько удручающей, что Бюро переписи населения США заключило контракт с Германом Холлеритом, американским изобретателем, на использование его идеи с перфокартами и счетными машинами для переписи 1890 года. [24] История переписей в США: US Census Bureau. The Hollerith Machine (онлайн-материал). URL: http://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html (последнее посещение — 25.07.2012).

С большим трудом ему удалось сократить время на сведение результатов с восьми лет до менее одного года. Это было удивительное достижение, которое положило начало автоматизированной обработке данных (и заложило основу будущей компании IBM). Однако такой метод получения и анализа больших объемов данных обходился все еще слишком дорого. Каждый житель Соединенных Штатов заполнял форму, из которой создавалась перфокарта для подсчета итогов. Трудно представить, как в таких условиях удалось бы провести перепись быстрее чем за десять лет. Но отставание определенно играло против нации, растущей не по дням, а по часам.

Основная трудность состояла в выборе: использовать все данные или только их часть. Безусловно, разумнее всего получать полный набор данных всех проводимых измерений. Но это не всегда выполнимо при огромных масштабах. И как выбрать образец? По мнению некоторых, лучший выход из ситуации — создавать целенаправленные выборки, которые представляли бы полную картину. Однако в 1934 году польский статистик Ежи Нейман ярко продемонстрировал, как такие выборки приводят к огромным ошибкам. Оказалось, разгадка в том, чтобы создавать выборку по принципу случайности. [25] Вклад Неймана: Kruskal, William. Representative Sampling, IV: the History of the Concept in Statistics, 1895–1939 / William Kruskal and Frederick Mosteller // International Statistical Review. — 1980. — Vol. 48. — P. 169–195, 187–188. Знаменитая статья Неймана: Neyman, Jerzy. On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection // Journal of the Royal Statistical Society. — 1934. — Vol. 97, No. 4 . — P. 558–625.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»

Представляем Вашему вниманию похожие книги на «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим»

Обсуждение, отзывы о книге «Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x