1 ...6 7 8 10 11 12 ...108 Например, если электронные медицинские записи показывают, что в определенном сочетании апельсиновый сок и аспирин способны излечить от рака, то точная причина менее важна, чем сам факт: лечение эффективно. Если мы можем сэкономить деньги, зная, когда лучше купить авиабилет, но при этом не имеем представления о том, что стоит за их ценообразованием, этого вполне достаточно. Вопрос не в том почему , а в том что. В мире больших данных нам не всегда нужно знать причины, которые стоят за теми или иными явлениями. Лучше позволить данным говорить самим за себя.
Нам больше не нужно ограничиваться проверкой небольшого количества гипотез, тщательно сформулированных задолго до сбора данных. Позволив данным «говорить», мы можем уловить корреляции, о существовании которых даже не подозревали. В связи с этим хедж-фонды анализируют записи в Twitter, чтобы прогнозировать работу фондового рынка. Amazon и Netflix рекомендуют продукты исходя из множества взаимодействий пользователей со своими сайтами. А Twitter, LinkedIn и Facebook выстраивают «социальные графы» отношений пользователей для изучения их предпочтений.
Разумеется, люди анализировали данные в течение тысячелетий. И письменность в древней Месопотамии появилась благодаря тому, что счетоводам нужен был эффективный инструмент для записи и отслеживания информации. С библейских времен правительства проводили переписи для сбора огромных наборов данных о своем населении, и в течение двухсот лет актуарии собирали ценнейшие данные о рисках, которые они надеялись понять или хотя бы избежать.
В «аналоговую эпоху» сбор и анализ таких данных был чрезвычайно дорогостоящим и трудоемким. Появление новых вопросов, как правило, означало необходимость в повторном сборе и анализе данных.
Большим шагом на пути к более эффективному управлению данными стало появление оцифровки — перевода аналоговой информации в доступную для чтения на компьютерах, что упрощало и удешевляло ее хранение и обработку. Это значительно повысило эффективность. То, на что раньше уходили годы сбора и вычисления, теперь выполнялось за несколько дней, а то и быстрее. Но, кроме этого, мало что изменилось. Люди, занимающиеся анализом данных, были слишком погружены в аналоговую парадигму, предполагая, что наборы данных имели единственное предназначение, в котором и заключалась их ценность. Сама технология закрепила этот предрассудок. И хотя оцифровка важнейшим образом способствовала переходу на большие данные, сам факт существования компьютеров не обеспечил этот переход.
Трудно описать нынешнюю ситуацию существующими понятиями. Для того чтобы в целом очертить изменения, воспользуемся датификацией (data-ization) — концепцией, с которой познакомим вас в пятой главе. Речь идет о преобразовании в формат данных всего, что есть на планете, включая то, что мы никогда не рассматривали как информацию (например, местоположение человека, вибрации двигателя или нагрузку на мост), путем количественного анализа. Это открывает перед нами новые возможности, такие как прогнозный анализ. Он позволяет обнаружить, например, что двигатель вот-вот придет в неисправность, исходя из его перегрева или производимых им вибраций. В результате мы можем открыть неявное, скрытое значение информации.
Полным ходом ведется «поиск сокровищ» — извлечение ценных идей из данных и раскрытие их потенциала путем перехода от причинности к корреляции. Это стало возможным благодаря новым техническим средствам. Но сокровища заключаются не только в этом. Вполне вероятно, что каждый набор данных имеет внутреннюю, пока еще не раскрытую ценность, и весь мир стремится обнаружить и заполучить ее.
Большие данные вносят коррективы в характер бизнеса, рынков и общества, о которых подробнее мы поговорим в шестой и седьмой главах. В ХХ веке особое значение придавалось не физической инфраструктуре, а нематериальным активам, не земле и заводам, а интеллектуальной собственности. Сейчас общество идет к тому, что новым источником ценности станет не мощность компьютерного оборудования, а получаемые им данные и способ их анализа. Данные становятся важным корпоративным активом, жизненно важным экономическим вкладом и основой новых бизнес-моделей. И хотя данные еще не вносятся в корпоративные балансовые отчеты, вероятно, это вопрос времени.
Несмотря на то что технологии обработки данных появились некоторое время назад, они были доступны только агентствам по шпионажу, исследовательским лабораториям и крупнейшим мировым компаниям. Walmart [18] Walmart — американская компания-ретейлер, управляющая крупнейшей в мире розничной сетью.
и CapitalOne [19] CapitalOne — американская банковская холдинговая компания, специализирующаяся на кредитах.
первыми использовали большие данные в розничной торговле и банковском деле, тем самым изменив их. Теперь многие из этих инструментов стали широкодоступными.
Читать дальше
Конец ознакомительного отрывка
Купить книгу