В мире «малых данных» сокращение количества ошибок и обеспечение высокого качества данных становились естественным и необходимым толчком к поиску новых решений. Поскольку собиралась лишь малая часть информации, мы заботились о том, чтобы она была как можно более точной. Поколения ученых оптимизировали свои инструменты, добиваясь все большей точности данных, будь то положение небесных тел или размер объектов под микроскопом. В мире, где правили выборки, стремление к точности принимало характер одержимости, сбор лишь ограниченного числа точек данных неминуемо вел к распространению ошибок, тем самым снижая точность общих результатов.
На протяжении большей части истории наивысшие достижения человека были связаны с завоеванием мира путем его измерения. Одержимость точностью началась в середине ХІІІ века в Европе, когда астрономы и ученые взяли на вооружение как никогда точную количественную оценку времени и пространства — «меру реальности», выражаясь словами историка Альфреда Кросби.
Негласно считалось, что, если измерить явление, его удастся понять. Позже измерения оказались привязанными к научному методу наблюдения и объяснения — способности количественно измерять воспроизводимые результаты, а затем записывать и представлять их. «Измерить — значит узнать», — говорил лорд Кельвин. И это стало основным постулатом. «Знание — сила», — поучал Фрэнсис Бэкон. В то же время математики и те, кто позже стал актуарием или бухгалтером, разработали методы, которые сделали возможным точный сбор и регистрацию данных, а также управление ими. [38] Кросби: Crosby, Alfred W. The Measure of Reality: Quantification and Western Society. — 1997.
К ХІХ веку во Франции (в то время ведущей стране в мире по уровню развития науки) была разработана система строго определенных единиц измерения для сбора данных о пространстве, времени и не только. Другие страны перенимали эти стандарты. Дошло до того, что признанный во всем мире эталон единиц измерения стал закрепляться в международных договорах. Это явилось вершиной эпохи измерений. Лишь полвека спустя, в 1920-х годах, открытия в области квантовой механики навсегда разрушили веру в возможность достичь совершенства в измерениях. Тем не менее, не считая относительно небольшого круга физиков, инженеры и ученые не спешили расставаться с мыслью о совершенстве измерений. В деловой сфере эта идея даже получила более широкое распространение, по мере того как рациональные науки — математика и статистика — начали оказывать влияние на все области коммерческой деятельности.
Между тем множатся ситуации, в которых неточность воспринимается скорее как особенность, а не как недостаток. Взамен снижения стандартов допустимых погрешностей вы получаете намного больше данных, с помощью которых можно совершать новые открытия. При этом действует принцип не просто «больше данных — какой-то результат», а, по сути, «больше данных — лучше результат».
Нам предстоит иметь дело с несколькими видами беспорядочности. Это может быть связано с тем, что при добавлении новых точек данных вероятность ошибок возрастает. Следовательно, если, например, увеличить показатели нагрузки на мост в тысячу раз, возрастет вероятность того, что некоторые показатели будут ошибочными. Вы увеличите беспорядочность, сочетая различные типы информации из разных источников, которые не всегда идеально выравниваются. Или, определив причину жалоб, направленных в центр обработки заказов с помощью программного обеспечения для распознавания речи, и сравнив эти данные со временем, затраченным со стороны оператора на их обработку, можно получить несовершенную, но полезную общую картину ситуации. Кроме того, беспорядочность иногда связана с неоднородностью форматирования. В таком случае, прежде чем обрабатывать данные, их следует «очистить». «Существуют буквально тысячи способов упомянуть компанию IBM, — отмечает знаток больших данных Дж. Патил, — от IBM до International Business Machines и Исследовательского центра Т. Дж. Уотсона». [39] Множество способов сослаться на IBM: Patil, D. J. Data Jujitsu: The Art of Turning Data into Product // O’Reilly Media. — July 2012. URL: http://oreillynet.com/oreilly/data/radarreports/data-jujitsu.csp?cmp=tw-strata-books-data-products.
Беспорядочность может возникнуть при извлечении или обработке данных, поскольку путем преобразования мы превращаем их в нечто другое. Так, например, происходит, когда мы анализируем настроения в сообщениях Twitter, чтобы прогнозировать кассовые сборы голливудских фильмов. А беспорядочность сама по себе… беспорядочна.
Читать дальше
Конец ознакомительного отрывка
Купить книгу