Для интерфейсов SPI и JTAG тоже можно использовать LPT-порт, здесь даже не требуется организация двунаправленных линий. Сигналы SCK
и MOSI
(SPI), TCK
, TMS
, TDO
и TRST
(JTAG) можно подключить к любым выходным линиям порта, MISO
(SPI), TDI
(JTAG) — к любой входной линии. Простейший адаптер содержит лишь последовательные резисторы 100–150 Ом, включенные в сигнальные цепи для уменьшения «звона» и влияния кабеля на схему. Однако такая схема может надежно работать лишь при небольшой длине кабеля (20–30 см), что не всегда удобно. Более надежна и удобна схема с буферами, способными переходить в высокоимпедансное состояние (например, 74НС244 или 1556АП5). Плата с буфером может соединяться с LPT-портом довольно длинным кабелем, а от нее к устройству идет короткий кабель. Программно-управляемый перевод буфера выходных сигналов в третье состояние позволяет логически отключать адаптер от программируемой схемы, что особенно удобно в процессе отладки программируемых устройств. Именно так устроен популярный адаптер «ByteBlaster», применяемый для программирования конфигурируемой логики фирмы Altera и других. Адаптер вместе с ПО может обеспечивать протокол SPI (быть ведущим устройством в варианте с двухточечной топологией), JTAG и собственный протокол программирования устройств «Serial Passive». Схемы различных адаптеров и ПО для них можно легко найти в Сети.
Программная реализация последовательных протоколов ограничивает скорость передачи данных на уровне 50-150 Кбит/с при работе LPT-порта в стандартном режиме. В режиме EPP или ECP можно достичь скорости и 1–2 Мбит/с, но при этом адаптер несколько усложняется (поскольку в этих интерфейсах требуется одновременно принимать и передавать данные). Решить проблему производительности, а заодно и расширить функциональные возможности позволяет использование специализированных интерфейсных адаптеров для шин PCI или ISA, выпускаемых рядом фирм. Есть и внешние устройства с интерфейсами USB или Ethernet. Правда, цена этих адаптеров и устройств существенно отличается от цены простого адаптера, который можно изготовить и самостоятельно.
Глава 12
Архитектурные компоненты IBM PC-совместимого компьютера
Аппаратные интерфейсы, описанные в книге, в IBM-PC-совместимом компьютере «живут» в специфическом архитектурном окружении. Эту специфику приходится учитывать при проектировании аппаратной части устройств, чтобы обеспечить с ними эффективное программное взаимодействие. В этой главе вкратце рассматриваются особенности процессоров x86 и связанные с этими особенностями распределение памяти, организация ввода-вывода и прерываний. Здесь же рассматривается традиционный контроллер DMA, системные средства измерения времени, а также способы внедрения собственных расширений BIOS и нетрадиционной (бездисковой) загрузки ПО в специализированные компьютеры на базе IBM PC.
12.1. Пространство физической памяти
Основную часть физического адресного пространства PC занимает оперативная память (ОЗУ), начинающаяся с нулевого адреса. В нее вклинивается область адресов A0000h-FFFFFh — Upper Memory Area ( UMA ), 384 Кбайт — верхняя память, зарезервированная со времен IBM PC для системных нужд. В UMA размещаются области буферной памяти адаптеров шины (E)ISA (например, видеопамять) и постоянная память (BIOS с расширениями). ОЗУ продолжается и за областью UMА. Под самой верхней границей физического адресного пространства имеется образ памяти системной ROM BIOS.
Для доступности сервисов BIOS в реальном режиме все ПК имеют образ ROM BIOS в адресах E0000h-FFFFFh или F0000h-0FFFFFh. Кроме того, образ BIOS должен находиться и под самой верхней границей адресного пространства, поскольку все процессоры х86 по аппаратному сбросу стартуют с адреса начала последнего параграфа памяти (FFFF0h — 8086/88, FFFFF0h — 80286 и 386SX, FFFFFFF0h — 386DX и выше с 32-разрядной шиной адреса, FFFFFFFF0h — P6 и выше с 36-разрядной шиной адреса).
Для компьютеров класса АТ-286 и 386SX с 24-битной шиной адреса верхняя граница оперативной памяти — FDFFFFh (максимальный размер 15,9 Мбайт). Область FE0000h-FFFFFFh содержит образ ROM BIOS, обращение к этой области эквивалентно обращению к ROM BIOS по адресам 0E0000h-0FFFFFh.
Для ПК на процессорах 386DX и выше с 32-битной шиной адреса теоретический предел объема ОЗУ — почти 4 Гбайт, верхний образ BIOS находится в адресах FFFE0000h-FFFFFFFFh. Для ПК на процессорах P6+ с 36-битной шиной адреса предел объема ОЗУ — почти 64 Гбайт и верхний образ BIOS находится в адресах FFFFE0000h-FFFFFFFFFh.
Читать дальше