Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 2004 году индексирующий движок Google был переведен на MapReduce. Затем эту технологию стали использовать для обработки видео и рендеринга карт Google Maps. Она была настолько проста, что ее стали использовать для широкого круга проблем. В том же году со стороны Google был заявлен патент [36] на MapReduce. Тогда же Джеффри и Санджай подумали, что было бы полезно познакомить астрономов, генетиков и других ученых, у которых очень много данных, c MapReduce. Они написали и опубликовали статью: «MapReduce: упрощенная обработка данных на больших кластерах» [37].

Статья произвела эффект разорвавшейся бомбы. Дешевое железо, рост числа веб-сервисов и подключенных устройств к Сети привели к «потопу» данных. На рынке было только несколько компаний с программными технологиями, которые могли справиться с этим. Дуг Каттинг и Майк Кафарелла (Mike Cafarella and Doug Cutting) работали над масштабированием своего поискового движка Nutch. Они были так впечатлены статьей, что на ее основе с нуля написали проект Hadoop. Затем Yahoo приглашает Каттинга продолжать работу над проектом внутри компании. В 2008 году начинается широкое применение Hadoop технологическими компаниями. Apache Hadoop сейчас распространяется под свободной лицензией [39].

Hadoop используется в большинстве технологических компаний, работающих с большими данными. Если не дистрибутив Apache, то какой-нибудь коммерческий от Mapr, Cloudera или другого вендора. Некоторые пошли своим путем и сделали собственную реализацию, например Яндекс.

Понять, как работает MapReduce, поможет иллюстрация (рис. 6.3).

Рис 63Подсчет числа слов в тексте Слева у нас есть исходный текст в каждой - фото 22

Рис. 6.3.Подсчет числа слов в тексте

Слева у нас есть исходный текст, в каждой строке которого встречаются имена людей. Первая операция, Split, разрезает текст по строкам, каждая строка обрабатывается независимо от других. Вторая операция, Map, считает количество упоминаний каждого имени в строке. Ее мы можем проводить параллельно на разных машинах, так как строки независимы друг от друга. Третья операция, Shuffle, раскидывает одинаковые имена в группы. Четвертая операция, Reduce, считает сумму упоминаний каждого имени в разных строках. На выходе мы получаем число упоминаний каждого имени в тексте. Этот пример написан на трех строках, но с триллионом строк все операции были бы такими же.

MapReduce – это концепция. Hadoop – это программное обеспечение, которое реализует эту концепцию. Сам Hadoop состоит из двух главных компонент: распределенной файловой системы HDFS и планировщика ресурсов Yarn.

Файловая система HDFS (Hadoop Distributed File System) для пользователя выглядит как обычная файловая система с папками и файлами, которую вы привыкли видеть в своих компьютерах. Сама система располагается как минимум на одном компьютере. В ней есть две главные роли – name node (центральный узел имен) и data node (узел данных). Когда пользователь хочет записать файл в HDFS, происходит разбиение файла на блоки (размер блока зависит от настройки системы), name node возвращает data node, в который нужно сохранить блок. Клиент отправляет данные на data node, после записи данные реплицируются – копируются на другие ноды. По умолчанию коэффициент репликации составляет 3, то есть один блок данных будет на трех узлах данных. Как только процесс завершится и все блоки будут записаны, name node сделает соответствующую запись в своих таблицах (где какой блок хранится и к какому файлу относится). Это дает защиту от ошибок, например, когда сервер выходит из строя. С коэффициентом репликации 3 мы можем безболезненно потерять две ноды. Кстати, в таком случае HDFS самостоятельно обнаружит такие ноды и начнет реплицировать данные между «живыми» нодами, чтобы снова достичь нужного уровня репликации. Так мы достигаем устойчивости расчетов с точки зрения данных.

Планировщик ресурсов YARN отвечает за распределение вычислительных ресурсов на кластере Hadoop. Благодаря ему мы можем запускать на одном кластере несколько задач параллельно. Сами вычисления происходят, как правило, там же, где находятся данные, на тех же самых нодах с данными. Это экономит много времени, так как скорость чтения данных с диска гораздо выше, чем скорость копирования их по сети. При запуске задачи через Yarn ему явно нужно указать, сколько ресурсов для расчета вам нужно: сколько машин (executors) из кластера, сколько ядер процессора (cores) на каждой машине и сколько памяти. Сам Yarn также предоставляет отчет в реальном времени о выполнении задачи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x