Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Второй способ – сделать запрос к сетевому API (Application Programming Interface). Вы пишете запрос в требуемом API формате, на выходе вам приходит, как правило, JSON, который вы можете обработать, сохранить в файл и т. д. Это требует кодирования, зато работать с такими интерфейсами бывает очень интересно.

Третий способ – базы данных через использование языка программирования SQL. Для разных систем баз данных существуют свои диалекты этого языка. Обычно это связано с оптимизациями и расширением стандартного языка. Чтобы получить данные из БД, необходимо к ней подключиться через драйвер API по сети, написать запрос SQL, и если все хорошо – получить данные на выходе. В какой бы компании я ни работал – везде писал на SQL. Настоятельно рекомендую ознакомиться с этим языком программирования или хотя бы с его азами.

Глава 6

Хранилища данных

Зачем нужны хранилища данных Хранилище данных содержит копию всех данных - фото 18

Зачем нужны хранилища данных

Хранилище данных содержит копию всех данных, необходимых для функционирования аналитической системы. Несколько лет назад появился модный термин Data Lakes (озеро данных) – это метод хранения данных системой или репозиторием в натуральном виде, то есть в формате, который предполагает одновременное хранение данных в различных схемах и форматах. Данные хранятся в том виде, в котором созданы: видеофайлы, изображения, документы, дампы таблиц из баз данных, CSV-файлы. Мое определение хранилища, которое я дал выше, очень сильно пересекается с озером данных. Также на кластере мы держали скачанные картинки, сырые и обработанные данные. Читателям я предлагаю меньше фокусироваться на терминах и не заморачиваться с ними, никто не даст вам четких инструкций, как хранить ваши данные. Это будет ваше решение, оно будет зависеть от ваших задач, которые предстоит решать именно вам.

Сейчас у хранилища данных гораздо больше функций, чем просто хранение данных для отчетов, – например, оно может выступать источником данных для обучения ML-моделей. Данные можно хранить не только в базе данных, но и в виде файлов, как делает Hadoop.

С моей точки зрения, хранилища данных:

1) являются цифровым архивом компании;

2) являются копией данных в источнике;

3) не изменяемы;

4) хранятся в виде, максимально приближенном к данным в источнике;

5) позволяют объединят данные из разных источников.

Относитесь к хранилищу как к архиву компании [34], ведь там хранятся данные с момента ее создания. Часть данных вы уже нигде не найдете, так как источники периодически чистятся. В Retail Rocket, например, мы периодически архивируем все данные: товарные базы интернет-магазинов (они изменяются со временем), их структуры каталога, сами рекомендации. Ни в каких источниках их уже нет, но они есть в нашем хранилище и помогают решать важные задачи: искать причины проблем и моделировать новые алгоритмы рекомендаций.

Напрямую с источником данных не стоит работать по двум основным причинам. Во-первых, запросы к данным на чтение оказывают очень большую нагрузку на диски и увеличивают время ответа рабочих машин, и клиенты получают ответы ваших систем с задержкой. Во-вторых, может быть нарушена конфиденциальность данных, хранящихся в источниках. Не все данные нужно забирать оттуда в исходном виде, чувствительную информацию клиентов лучше не трогать или шифровать при загрузке в хранилище. Само хранилище проводит незримую границу между вашей рабочей системой, которая должна работать надежно, и данными, которые будут использованы для анализа. В Ozon.ru у меня был один раз случай, когда мой сотрудник, обращаясь напрямую к источнику данных, повредил данные клиента – разработчики тогда очень разозлились.

Неизменяемость уже загруженных данных в хранилище гарантирует, что ваши аналитические отчеты не будут меняться. Я буду лукавить, если скажу, что так не бывает. Бывает, но обычно из-за технических ошибок или расширения перечня хранимых данных. Такие инциденты нужно минимизировать по двум причинам. Во-первых, перезагрузка данных бывает очень длительной и блокирующей аналитическую систему. Например, у нас в Retail Rocket такая операция между Hadoop и Clickhouse могла занимать дни и даже недели. Во-вторых, доверие пользователей к вашей системе будет подорвано из-за изменения данных, а значит, отчетов и решений, которые были сделаны на их основе. Легко ли вам будет доверять данным, которые изменяются задним числом?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x