Еще один недостаток статистического подхода – измерение, которое лежит в его основе. Об этом пишет в своей книге «Тирания показателей» [18] Джерри Миллер, ученый, автор многочисленных статей для New York Times и Wall Street Journal:
«Есть вещи, которые можно измерить. Есть вещи, которые полезно измерять. Но поддающееся измерению не всегда оказывается тем, что нужно измерять. Измеряемое может не иметь никакого отношения к тому, что мы на самом деле хотим узнать. Затраты на измерение могут превышать приносимую пользу. Измерения могут отвлекать нас от действительно важных вещей».
Бездумное внедрение количественных показателей везде, где только можно, – зло. Я помню, как в школе на уроках физкультуры нас гоняли по нормативам. Вы тоже бегали на скорость стометровку и прыгали в длину? Но при этом никто не прививал культуру тренировок и привычку к ежедневной физической активности. Соответствие абстрактным нормативам оказалось важнее не только твоего личного прогресса (все мы разные – усреднять нельзя!), но и любви к спорту – а это в корне неправильно. Помню, читал пост выпускника Физтеха в соцсети: «1987 год. Мы уже поступили… А потом была какая-то контрольная по физкультуре. Надо было на время переплыть физтеховский 25-метровый бассейн. Заставили всех, а потом вывесили результаты. Помню, как я их изучал: 30 сек, 35 сек, 1 мин, 2 мин, 5 мин… Последней строкой значилось: “сошел с дистанции”. Куда сошел?»
Все мы знаем про «палочную» систему в силовых органах, которая доводит до абсурда. Саша Сулим, автор книги «Безлюдное место. Как ловят маньяков в России» [8], посвященной знаменитому делу ангарского маньяка, пишет в ней о том, как их на самом деле не ловят – милиция много лет не связывала убийства женщин в серию, игнорируя очевидные факты, чтобы избежать в отчетах «висяка» и непойманный маньяк не портил статистику раскрываемости.
Но хотя количественные оценки – это плохо, никто пока не придумал ничего лучше. И надо признать, что методы этих оценок эволюционируют, усложняясь. Десять лет назад я (как, вероятно, и большинство моих коллег), оценивая эффективность сайта, фокусировался на конверсии и лишь потом начал обращать внимание на другие метрики: средняя выручка на посетителя сайта, средняя стоимость заказа, среднее число товаров в заказе и даже маржа. Одновременно эти показатели нужно делить по верхним категориям товаров и группам пользователей (если достаточно данных). Одной количественной метрики – конверсии – оказалось недостаточно: экономика интернет-магазина сложнее.
Глава 3
Строим аналитику с нуля
В этой главе я изложу свой подход к построению аналитики в компании с нуля. За всю мою карьеру в найме я делал это дважды – в Ozon.ru, Wikimart.ru и один раз как сооснователь – в компании Retail Rocket. И еще помог сделать это нескольким компаниям в режиме консультирования, заодно поучаствовав в найме сотрудников.
Когда передо мной стоит задача сделать аналитическую систему или существенно расширить ее возможности, я всегда использую двусторонний подход: определяю, какие задачи и вопросы перед нами стоят, и выясняю, какие данные есть в источниках.
Чтобы сформировать список задач, необходимо провести интервью со всеми потенциальными потребителями информации, кого это может коснуться. Создавая дизайн системы для пользователей, нужно знать ответы на следующие вопросы:
• Какие метрики понадобится считать?
• Какие дашборды собрать?
• Какую информацию отправить в интерактивные системы?
• Будут ли тут задачи ML (машинное обучение)?
Сложность этого шага в том, что потребители (заказчики) не всегда представляют, какая именно информация им понадобится. И для того чтобы выстроить эффективную систему, аналитику необходимо самому обладать хотя бы минимальной экспертизой в том бизнесе, который он анализирует. После работы в интернет-магазинах мне поначалу было непросто в Ostrovok.ru (система бронирования отелей) – да, продажи идут тоже через интернет, но тут понадобились очень специфические знания отельного бизнеса. Ваша собственная экспертиза помогает вам во время интервью с заказчиком задавать правильные вопросы и на основе ответов формировать структуру данных, которые понадобятся для решения задач клиента.
Затем я иду к разработчикам и начинаю узнавать, а что же, собственно, у них есть – какие данные они собирают и где эти данные находятся. Во-первых, меня интересуют данные, которые помогут решать задачи клиента (мне важно увидеть не только схемы, но и живые примеры таких данных – строки таблиц и файлов). Во-вторых, для меня важны те данные, которые есть, а применения им пока нет – какие задачи они могли бы решить? К финалу этого этапа у меня уже есть:
Читать дальше
Конец ознакомительного отрывка
Купить книгу