Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кроме того, заказчику чаще всего лень вдаваться в детали, и он готов платить огромные деньги просто за яркую обертку. Этот феномен очень хорошо эксплуатируется продавцами IT-решений, консультантами всех мастей. Я наблюдал его, когда Ozon.ru выбирал решение для веб-аналитики между Omniture SiteCatalyst и Webtrends. Обе команды продавцов активно рассказывали о «светлом» будущем. Так как никто из принимающих решения не был особенно в теме (я, кстати, тоже), то выбрали тех, кто «поет» лучше. Презентация Omniture выглядела эффектней, они нам подарили радиоуправляемые машинки и всякие подарки. Поэтому выбор был сделан в их пользу, хотя я нахожу системы равнозначными, и стоили они почти одинаково. В продолжение истории – когда я пришел в Wikimart.ru, мне уже было понятно, что нужно пользователям от веб-аналитики. Я быстро накатал техническое задание, его реализовали разработчики, и через два месяца после моего прихода в компании была своя система веб-аналитики, ничуть не хуже Omniture. И экономия составляла порядка 100 тысяч долларов в год.

Я не утверждаю, что продавцы и консультанты плохи, я призываю вас самих не лениться. Прочитайте книгу, а лучше две по теме, дочитайте их до конца. Ищите независимых экспертов, которым сможете доверять. Главное – это погружаться в детали, именно там кроются и все проблемы, и их решения. Будьте скептичны по отношению к своим эмоциям. Будьте скептичны к докладам на конференциях, они часто однобоки и слишком позитивны, чтобы быть правдой. Там есть интересные вещи, но мало кто рассказывает, чего стоило то или иное решение.

Продать аналитику внутри компании

Для меня это очень непростой вопрос. В разделе «Кто анализирует данные» я упоминал, что аналитическую систему мне удалось поднять за два месяца (причем я работал тогда два дня в неделю). «Продажа» ее пользователям заняла гораздо больше времени, и только спустя 4 месяца системой начали более-менее пользоваться. Причем kick-off-презентацию я делал сразу после запуска: пригласил туда всех значимых сотрудников компании, включая основателей.

Мне легче работать на индивидуальном уровне: поговорить за обедом, обменяться парой фраз у кулера с водой, поинтересоваться чужими задачами, копнуть глубже. Затем представить в уме схему решения – что есть и чего не хватает. Прислать решение человеку, показать его лично. Приучать людей к новой системе лучше не навязывая, а обучая – так пользователи постепенно поймут, как она может ускорить решение их задач.

В Retail Rocket мы так внедряли аналитику на базе ClickHouse. Ранее данные были доступны только в SQL-интерфейсе к вычислительному кластеру на базе Spark/Hadoop (эти технологии мы обсудим в главе о хранилищах), Hive. Подобная схема используется в компании Facebook, они так дают доступ к данным внутри своей компании. Проблема этой технологии заключается в том, что она медленно считает, запросы выполнялись до 30 минут, а данные доступны только до вчерашних суток. Пользовались этой системой только сотрудники технической поддержки. В одном из проектов мы попробовали аналитическую базу данных ClickHouse от Яндекса. Нам она понравилась: быстро считала, большая часть запросов – это секунды, можно было сделать систему, близкую к реальному времени. Вначале пересадили на нее техническую поддержку, а в Retail Rocket это одно из самых сильных подразделений. Они очень быстро полюбили эту технологию за скорость и отказались от использования медленного Hive. Далее мы начали предлагать новую систему пользователям внутри компании. После обучающих презентаций многие сотрудники зарегистрировались в системе, но не стали ею пользоваться. Тогда мы пошли другим путем: все входящие задачи от сотрудников, которые можно было решить с помощью этой системы, начали раз за разом «отфутболивать» – возвращать под соусом «сделай сам», демонстрируя возможности системы. И часть пользователей стала работать с системой самостоятельно! Там многое еще можно сделать, но то, что уже сделано, я считаю успехом.

Вообще, если абстрагироваться от продаж аналитики внутри компании, в структуре бизнеса часто не хватает такой роли, как руководитель внутреннего продукта. Задачей которого было бы помогать сотрудникам работать эффективнее, лучше автоматизировать внутреннюю деятельность, избавляться от неэффективного «мартышкиного» труда. В компаниях часто любят внедрять процессы, чтобы забюрократизировать работу, но мало кто думает о внутреннем продукте, чтобы целенаправленно облегчить работу своим сотрудникам. Я думаю, причина в том, что сложно посчитать, сколько заработает на этом компания. Но на самом деле это очень важная роль. И если она есть – продажа аналитики внутри компании происходит естественным образом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x