Жесточайшая критика типично схоластического метода ссылки на древние авторитеты, широкая и остроумная пропаганда экспериментального знания - вот основные достижения Фрэнсиса Бэкона, оказавшие большое влияние на взгляды современников и на систему организации английских научных учреждений. "Истина - дочь времени, а не авторитета",- прямо заявлял он.
Огромную роль в становлении науки сыграла деятельность французского математика и философа Рене Декарта (1596-1650), чья военная и светская карьера завершилась в 1629 году эмиграцией в Нидерланды. Вдали от опасной парижской суеты Декарт разработал аналитическую геометрию и самое главное свою концепцию научного познания. Как и Бэкон, Декарт был рационалистом, считал опыт высшим критерием любой новой идеи, но очень важно, что на первый план он выдвинул скептический взгляд на мир, точнее, на существующие картины мира. Сомнение - своеобразный первотолчок познания. Допустим любой подход вопреки любым авторитетам, лишь бы его можно было оправдать наблюдениями. Эта идея свободного конструирования гипотез, не противоречащих экспериментальным данным, стала колоссальным стимулом в развитии теоретического естествознания.
Есть много проблем, в решении или постановке которых Декарт считается первым. Начнем с того, что именно он ввел в обращение понятие "законы природы" - едва ли не основное в естественных науках. Он первым попытался ответить на вопрос о природе сил тяготения, формирующих Солнечную систему. Опираясь на свою общую концепцию материи, безгранично делимой и непрерывно заполняющей пространство, Декарт считал, что движение планет и их происхождение обусловлено некими тончайшими материальными вихрями. В его модели планеты двигались подобно щепочкам в круговороте.
Разумеется, историческая близость схоластических времен и беспредельный рационализм нередко приводили Декарта к очень громоздким, неверным, или, во всяком случае, несвоевременным гипотезам. Скажем, четко разграничивая духовный и телесный мир, Декарт пытался объяснить взаимодействие между человеческой душой и телом функционированием особой железы. Так и осталась неразгаданной природа придуманных им вихрей. Однако важны не столько заблуждения, сколько направление мысли. В той же вихревой модели возникает первое предчувствие будущих теоретико-полевых представлений для гравитации и других сил. В этом плане Декарт пошел дальше не только современников, но и ближайших последователей, пытаясь единым законом охватить проблемы структуры и эволюции Солнечной системы.
Между тем, строгое математическое объяснение модели Коперника и Кеплеровых законов стало весьма актуальной задачей. К решению ее устремились многие крупнейшие ученые, среди них - Гюйгенс, Гук и Ньютон.
Видимо, первым, кто ясно осознал связь между эллиптическими орбитами планет и законом гравитационной силы (обратной пропорциональностью силы квадрату расстояния), стал английский ученый Роберт Гук (1635-1703), удивительно разносторонний исследователь и изобретатель*. Это произошло в 1679 году.
*Гук знаменит не только своим Законом упругой деформации твердых тел, но и открытием клеточного строения живых существ.
Однако проблема оказалась глубже - дело было не в конкретном законе взаимодействия небесных тел, а в отсутствии достаточно общих законов движения. Не хватало понятийного и математического аппарата, связывающего воедино все достижения того времени.
Гигантскую работу по созданию такого аппарата теоретической механики удалось выполнить Исааку Ньютону (1642-1727). Начало его жизни совпало с бурным периодом английской истории - казнью Карла I, диктатурой Кромвеля и реставрацией Стюартов. В 1661 году Ньютон поступил в знаменитый Тринити-колледж Кембриджского университета, чтобы пройти славный и, в общем-то, спокойный путь от сына простого фермера до президента Лондонского Королевского общества и директора королевского Монетного Двора. Жесткие ветры времени почти не коснулись его семьи, но, несомненно, создали особую атмосферу, его взрастившую.
В какой-то степени на пользу Ньютону пошла даже разразившаяся в 1665 году в Лондоне эпидемия чумы, заставившая молодого магистра удалиться в деревню и с головой уйти в опыты и размышления. Видимо, в этот период у него начали формироваться новые идеи по поводу небесной механики и оптики. Во всяком случае, возвратившись в Кембридж, он продемонстрировал превосходный телескоп-рефлектор, а немного позднее, в 1671 году,- новый зеркальный телескоп. Последнее изобретение и послужило поводом для его приема в члены Лондонского Королевского общества. Успешно работая в области оптики и в математике, Ньютон шаг за шагом создает главный труд своей жизни - "Математические начала натуральной философии". Книга увидела свет и то благодаря активному напору друзей - лишь в 1687 году*.
Читать дальше