В таблице 12 приведены данные характеристики проницаемости полимеров для некоторых газов при комнатной температуре (Дубяга, 1981). Обычно газоселективные мембраны классифицируют по методу их получения, геометрической форме, назначению, структурным особенностям и материалу, из которого они изготовлены.

Таблица 12. Газопроницаемость различных материалов
ОСНОВЫ СОЗДАНИЯ МОДИФИЦИРОВАННОЙ ГАЗОВОЙ СРЕДЫ ДЛЯ ХРАНЕНИЯ ЦВЕТОЧНОЙ ПРОДУКЦИИ
Если в герметизированном контейнере с ГСЭМТ находится свежая цветочная продукция, то через некоторое время внутри контейнера вследствие дыхательных процессов и диффузии газов сквозь мембрану сформируется атмосфера, газовый состав которой можно регулировать, подбирая площадь мембраны, ее проницаемость и селективность.
Зная характеристики мембран и параметры дыхания цветочной продукции, можно рассчитать оптимальную для данного количества цветов упаковку или контейнер с ГСЭМТ.
Саморегулируемая МГС в загруженной продукцией упаковке или контейнере с пониженным по сравнению с атмосферным содержанием кислорода и повышенным — углекислого газа представляет собой сумму балансируемых концентраций кислорода и углекислого газа, проникающих как снаружи внутрь, так и изнутри наружу через газоселективную мембрану. Вследствие снижения давления кислорода внутри упаковки, вызываемого расходом его на дыхание продукции, создаются благоприятные условия дальнейшей диффузии кислорода из атмосферы внутрь упаковки. Это способствует поддержанию на заторможенном уровне метаболических процессов в цветочной продукции. Выделяемый при этом избыток углекислого газа диффундирует в атмосферу.
Положительный эффект действия модифицированной газовой среды на сохраняемость цветочной продукции обусловлен рядом факторов. Снижается интенсивность дыхания, замедляются биохимические процессы старения растительных клеток и тканей, повышается устойчивость против физиологических и фитопатогенных заболеваний, сокращаются расход питательных веществ и испарение влаги. В результате этого продлеваются сроки хранения, увеличивается выход качественной продукции после хранения, до минимума сокращаются потери массы цветов, лучше сохраняются в них биологически активные вещества.
Для стеблевых черенков сочетание благоприятных факторов хранения способствует образованию у них кал-люса и корневых зачатков. Это, в свою очередь, приводит к активному укоренению черенков и сокращению их потерь после хранения (Рукавишников, 1982).
Процесс создания и поддержания модифицированной газовой среды описывается рядом уравнений, применение которых в практике позволяет значительно сократить время отработки оптимальных режимов и разработки новых средств хранения в МГС. В этой связи теоретическое обоснование метода хранения в МГС представляет практический интерес для цветоводства.
При хранении растительной, в том числе и цветочной, продукции в МГС уменьшение объема кислорода в контейнере или упаковке пропорционально массе заложенной на хранение продукции и интенсивности ее дыхания. Последняя, в свою очередь, будет пропорциональна произведению значения первоначальной интенсивности дыхания на концентрацию кислорода, выражаемую отношением текущего объема кислорода к первоначальному его объему. Поступление кислорода в контейнер извне пропорционально площади мембраны S, разности парциальных давлений этого газа вне и внутри контейнера и проницаемости мембраны по кислороду Р. Процессы поступления и поглощения кислорода в соответствии с этим определяются следующим образом:
dV 1= —K(V 1/V)mdt(Уменьшение содержания О 2) + p 1P 1S[V–V 1]dt(Поступление О 2), (5)
Где V первоначальный объем кислорода, м 3, m — масса цветочной продукции внутри контейнера, кг; р — парциальное начальное давление кислорода, Па; К — см. формулу (1).
Решением дифференциального уравнения (5) будет
V 1= V(1 + mKe -t/tP 1P 1S)(1+mK/p 1P 1S). (6) В выражении (6) τ—постоянная времени, характеризующая скорость установления стационарного режима:
τ = V/(p 1P 1S + mK). (7)
Если p 1= 0, то через время t = τ содержание кислорода в контейнере уменьшится в е раз, а через t=4τ упадет ниже предельно допустимого значения—2 %. Это справедливо для замкнутого герметичного объема в отсутствие мембраны, поскольку ее наличие обеспечивает возможность поступления определенного количества кислорода извне.
Читать дальше