
13. Состав газовой среды (%) в зависимости от относительной загрузки мембраны
На практике значение относительной загрузки обычно не превышает 10, будучи ограниченным предельно допустимой концентрацией кислорода, равной 2 %.
В настоящее время разработаны мембраны для хранения свежей растительной, в том числе и цветочной, продукции в МГС типа СИГМА, ПВТМС, МДО-АС и МД-К2, Карбосил-АС. Первая представляет собой текстильную основу, покрытую силиконовым эластомером, например вулканизатом полидиметилсилоксанового каучука. Остальные не имеют тканевой основы. Мембрана ПВТМС изготавливается из поливинилтриметилсилана, а мембраны типа МДО-АС и МД-К2—на основе крем-нийорганических полимеров. Основные характеристики мембран для создания МГС при хранении свежей растительной продукции приведены в таблице 14.

14. Параметры мембран для хранения растительной продукции
Мембраны часто имеют определенный разброс своих параметров, поэтому вместо рабочей точки на карте режимов в координатах концентраций С0 2и О 2существует некоторая вероятная рабочая область, размеры которой можно оценить расчетным путем.
Некоторые мембраны имеют коэффициент вариации CV по проницаемости около 40, а по селективности — 25 %. Для оценки величины вероятной рабочей области на карте режимов (средняя селективность а = 3,69 при CV = 25 % и СV = 40 % по проницаемости для кислорода) определим сектор рабочих режимов, задаваемый вариациями селективности а = (3,69+0,25)3,69=3,69=1=0,92, то есть значение селективности будет находиться между вероятными значениями σ max= 2,77 и σ mах= 4,61. С учетом того что μ — пропорционально величине Р, коэффициент вариации значения р будет соответствовать коэффициенту вариации для Р. В этом случае при среднем значении μ/μ 0= 6 возможны отклонения (μ/μ 0) min= 6—(6•0,4) = 4,6 И (μ/μ 0) mах= 6+(6–0,4) = 8,4.
Этими координатами и ограничивается площадь возможных режимов, где должна находиться вероятная рабочая точка, соответствующая данной мембране (см. рис. 14, заштрихованная область).
Однако даже в случае совершенно бездефектных мембран создание режима с заданной концентрацией кислорода ξ 1и углекислого газа 1,2 возможно отнюдь не во всех случаях.
Если имеется набор мембран с различной селективностью а, то газовый состав в упаковке, рассчитанной на определенную массу цветов, можно регулировать двумя путями: изменением площади мембраны S и выбором мембран с разной селективностью σ. Если приходится ограничиваться мембраной одного заданного типа, что часто бывает на практике, то единственной возможностью регулирования газового состава остается изменение площади мембраны, то есть изменение ее загрузки (количества продукции на единицу площади мембраны).
Изменяя загрузку мембраны (соотношение μ/μ 0), можно перемещать рабочую точку вдоль линии σ = const. В зависимости от относительной загрузки меняются концентрация кислорода и связанная с ней концентрация углекислого газа, причем, как было указано выше, последняя не может быть установлена независимо от концентрации кислорода для данной мембраны с заданными свойствами. Вследствие этого приходится ограничиваться таким режимом хранения, который по своим параметрам лишь приближается к оптимальному, и, кроме того, может возникнуть дополнительная погрешность из-за неровности мембран.
Практика хранения цветочной продукции в полимерных упаковках с газоселективными мембранами показывает, что создаваемый режим по газовым компонентам нередко отличается от расчетного, что обусловливает необходимость определенной корректировки. Если для регулирования газовых компонентов использовать по крайней мере две разнотипные мембраны, то возможности корректировки режима МГС существенно расширятся.
При обозначении площадей мембран S 1и S 2, значений их селективности σ 1и σ 2и проницаемости по кислороду P 1и Р 2уравнения баланса по кислороду и углекислому газу, аналогичные (5) и (8), можно записать в виде
dV 1= — K(V 1/V)mdt+pP 1S 1[1-(V 1/V)]dt+pP 2S 2[1 — (V 1/V]dt; (12)
dV 2= σ(V 1/V)mKdt — pPσ 1S 1(V 2/V)dt — pP 2σ 2S 2(V 2/V)dt. (13)
Решения этих уравнений в обозначениях концентрации будут иметь вид
ξ 1— ξ 0/[1 + 1/(μ 01/μ 1+ μ 1+ μ 02/μ 2)]; (14)
ξ 2= σξ 1/[σ 1— (μ 01/μ 1) + σ 2(μ 02/μ 2)]. (15)
Здесь приняты следующие обозначения:
Читать дальше