Яков Перельман - Загадки и диковинки в мире чисел

Здесь есть возможность читать онлайн «Яков Перельман - Загадки и диковинки в мире чисел» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Развлечения, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Загадки и диковинки в мире чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Загадки и диковинки в мире чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Занимательные рассказы о числах-великанах и числах – карликах, о системах счисления, об арифметических парадоксах и головоломках разнообразят школьную программу и сделают интересным ваш досуг.

Загадки и диковинки в мире чисел — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Загадки и диковинки в мире чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Такова общая схема вычислений недельного дня любой даты. На практике дело значительно упрощается. Прежде всего заметим, что в течение каждого 28-летнего периода бывает, вообще говоря, 7 високосных лет (неделя), – так что каждые 28 лет день недели любой даты должен повторяться. Кроме того, вспомним, что мы в предыдущем примере вычли из 1923 сначала 1, а затем календарную разницу обоих стилей, т. е. 13, всего 1 + 13 = 14 дней, или две полных недели. Но полное число недель, понятно, не влияет на результат. Поэтому для дат XX века надо принимать во внимание только: 1) число дней, протекших с 1 января данного года – в нашем примере 347; затем 2) прибавить число дней, соответствующее остатку лет от деления 1923 на 28, и наконец, 3) число високосных лет в этом остатке, т. е. 4. Сумма этих трех чисел (347 + 19 + 4), т. е. 370, дает при делении на 7 тот же остаток 6 (пятница), который был получен нами раньше.

Таким же образом мы найдем, что 15 января 1923 г. приходится на понедельник (14+19 + 4 = 37;37:7 – в остатке 2). Для 9 февраля нового стиля 1917 г. мы нашли бы 39 + 13 + 3 = 55; при делении 55 на 7 получаем в остатке 6 – пятница. Для 29 февраля нового стиля 1904 г.: 59 + 0–1 [33] = 58; остаток от деления на 7 здесь 2 – понедельник.

Дальнейшее упрощение состоит в том, что вместо полного числа дней месяца (при исчислении числа дней, протекших после 1 января заданного года), принимают в расчет только его остаток от деления на 7. Далее, разделив 1900 на 28, получаем в остатке 24 года, в которых содержится 5 високосных лет; прибавив их к 24 и найдя, что сумма 24 + 5, т. е. 29, дает при делении на 7 остаток 1, определяем, что 1 января 1900 года было в 1-й день недели. Отсюда для первых чисел каждого месяца получаем следующие числа, определяющие соответствующие им дни недели (мы будем их называть «остаточными числами»).

Остаточные числа для:

Запомнить эти числа нетрудно; кроме того, их можно нанести на циферблат карманных часов, поставив возле каждой цифры циферблата соответствующее числи точек [34] .

Сделаем теперь расчет дня недели, например, для 31 марта 1923 г.

Остаток от деления на 7. . 0 – суббота.

Найти день недели 16 апреля 1948 г.

Остаток от деления на 7. . 6 – пятница.

Найти день недели 29 февраля 1912

Остаток от деления на 7. . 5 – четверг.

Для дат предшествующих столетий (XIX, XVIII и т. д.) можно пользоваться теми же числами; но надо помнить, что в XIX веке разница между новым и старым стилем была не 13, а 12 дней; кроме того, при делении 1800: 28 получается в остатке 8, что вместе с 2 високосными годами в этом остатке составляет 10 (или 10 – 7 = 3), т. е. соответствующее характерное число для дат XIX века должно быть увеличено на 3–1 = 2. Так что, например, день недели 31 декабря 1864 г. нового стиля мы определим сначала по предыдущему, а затем внесем соответствующую поправку – прибавим 2 дня:

Остаток от деления на 7. . 0 – суббота.

Найти день недели 25 апреля нового стиля 1886 г.

Остаток от деления на 7. . 1 – воскресенье.

После недолгого упражнения можно и еще более упростить вычисления, а именно – писать, вместо приведенных здесь чисел, прямо их остатки от деления на 7. Например, день недели 24 марта 1934 г. мы определим в результате следующих простых выкладок:

Искомый день – суббота.

Подобного рода упрощенными приемами [35] пользуются обычно те мнимые «гениальные математики», которые показывают публике свое искусство быстрого счета. Как видите, все это очень просто и без труда может быть выполнено каждым после непродолжительного упражнения.

Календарь на часах

Знание этих маленьких секретов может не только пригодиться нам для выполнения фокусов, но и сослужить службу в повседневной жизни. Мы легко можем превратить свои карманные часы в «вечный календарь», с помощью которого сможем определить дни недели любых дат какого угодно года. Для этого понадобится только, осторожно сняв стеклышко с часов, нанести на циферблате тушью [36] точки возле цифр, в числе, соответствующем таблице, стр. 136. Как пользоваться этими точками, мы уже знаем.

Календарь на часах

Особенно просто это для дат XX столетия: к числу точек прибавляют число месяца, последние две цифры года и частное от деления их на 4, а еще лучше – остатки от деления этих чисел на 7. Остаток от деления суммы этих 4 слагаемых на 7 показывает день недели, а именно:

0 – суббота,

1 – воскресенье,

2 – понедельник,

3 – вторник и т. д.

Еще проще пользование часами-календарем для дат текущего года. Для каждого года нужно лишь держать в памяти остаток от деления на 7 суммы числа прошедших от начала века лет и четверти этого числа, этот остаток постоянно должен прибавляться к числу месяца определяемой даты вместе с числом точек возле соответствующей цифры. В частности, для 1923 года остаток этот равен нулю, потому что

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Загадки и диковинки в мире чисел»

Представляем Вашему вниманию похожие книги на «Загадки и диковинки в мире чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Загадки и диковинки в мире чисел»

Обсуждение, отзывы о книге «Загадки и диковинки в мире чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x