И говоря так, мы вовсе не умаляем значения вычислительной техники в учебном процессе общеобразовательной школы. Наоборот, в экспериментальных классах школьники много работают с микрокалькуляторами и без труда выполняют на них все операции, но никогда еще не было проведено ни одного урока по физике или по математике, на котором бы все расчеты были отданы машинам. Хотя ученики и понимают, что при необходимости они могут обратиться к помощи ЭВМ, но предпочтение все же отдают устному счету. Правда, кому-то из ребят поручается вести расчеты с помощью микрокалькуляторов. Так сказать, для контроля. Освоить эти приборы - наука нехитрая, но ученику нужно научиться мыслить, и устный счет в решении этой задачи занимает далеко не последнее место.
Решения с отсроченной проверкой
В классе решена сложная задача: "Задуманное целое, положительное число. К его записи присоединили справа цифру 7 и из полученного нового числа вычли квадрат задуманного числа. Остаток уменьшили на 75% этого остатка и еще вычли задуманное число. В результате пришли к нулю. Какое число задумано?"
Процесс решения должен быть понятен всем, без исключения, пятиклассникам, и столь же необходимо, чтобы интерес к решению задачи не угасал ни на секунду, вплоть до получения окончательного результата. Верность ответа в значительной степени зависит от четкого решения итогового квадратного уравнения, и ребята это хорошо понимают. Квадратные корни при неправильно составленном уравнении не извлекаются, и целое число 7, полученное в результате решения, само по себе уже является гарантом правильности проведения всех операций. И все же проверка решения необходима. Вот только когда ее проводить? Сразу после решения? При работе в обычных условиях так всегда и поступают. Но не лучше ли отложить проверку на следующий урок? От одного урока алгебры до другого 2-3 дня, или 12-18 разных уроков. За это время из памяти ребят могут безвозвратно уйти и эмоции, и логические построения, связанные с решением этой задачи. Не обратись к ней учитель еще раз, через несколько месяцев на ее решение будет потрачено ничуть не меньше времени и энергии, чем впервые. Но вот на следующем уроке учитель как бы нечаянно припоминает, что после решения задачи на прошлом уроке не было проверено ее решение. Разве можно без проверки? И вот тут без каких-либо записей на доске он негромко прочитывает еще раз условие задачи, подчеркивая, что в ответе получилось 7. Несколько секунд дается классу для общей ориентации, и начинается математическая лапта.
- Приписываем семерку,- говорит первый ученик из первых поднявших руку.
- Получаем 77,- включается второй.
- Квадрат задуманного числа - 49,- продолжает третий.
- В остатке получается 28,- после некоторого раздумья сообщает четвертый.
- Находим 75% от 28,- подхватывает пятый.
- Получаем 21,- завершает устные расчеты шестой
- Теперь уже ясно,- подводит итог учитель,- что если из остатка вычесть три четверти его, то останется задуманное число. Задача решена верно.
Рассмотрим этот маленький методический элемент и заметим, что при проведении математических расчетов повторяется весь процесс решения задачи, описанной ранее. Не менее важно учитывать при этом и психологическое состояние класса. С одной стороны, задача несколько подзабыта и требует определенного напряжения мысли, с другой же - она узнаваема, и весь процесс решения теперь доступен каждому ученику, что, вполне естественно, не могло иметь места на прошлом уроке. Наконец, решение идет уже не по алгебраически-туманным символам, а по конкретным числам, создающим зримое представление о процессе преобразований. И вот это-то сочетание доступности и преодоления сложного дает совершенно неожиданный педагогический эффект: все сидят затаив дыхание, вникая в каждый переход и каждый новый результат, каждое слово учителя и товарищей. Более того, даже самые робкие теперь не идут след в след по расчетам и записям, появлявшимся на доске на предыдущем уроке, а предвосхищают новые действия. Внутренняя логика задачи раскрывается во всех деталях, и это чувство крепнущей мысли стимулирует развитие познавательного интереса, становится предпосылкой новых побед над собственной математической слабостью.
Зона переноса
Учителю географии, русского языка переноса языка или какого-либо другого учебного предмета, не связанного с громоздкими математическими выкладками, расчетами и формулами, рассказ о решении задач с отсроченной проверкой мог представиться частнометодическим элементом, имеющим отношение только к урокам математики, физики, химии, астрономии и других, так называемых точных наук. Глубочайшее заблуждение! Любое продвижение учеников в познании основано на многократном вариативном повторении, закреплении и ассимиляции огромного количества сведений, сопровождающихся одновременным введением все нового и нового материала. Это только молодому, не имеющему достаточного педагогического опыта учителю в первые годы работы никак невозможно понять, почему ученики не могут воспроизвести вчера еще только изученное правило, а спустя неделю снова не знают его, хотя оно звучало уже много раз; почему не даются ребятам задачи, вариативные образцы которых неоднократно решались на многих уроках; почему в диктантах тысячи раз (!) повторяются одни и те же ошибки, от которых уже кажется впору сойти с ума.
Читать дальше