Но хлебнули и проблем. Например, в регуляторах дизелей редукторы в механизме изменения уставки изготавливались так топорно, с такой зоной нечувствительности, что серводвигатели трогались только при подаче на них почти номинального напряжении. О каком пропорциональном регулировании можно было говорить? Конечно же, возникли автоколебания в системах распределения активной нагрузки. Пока нашли, в чём причина, пережили массу страхов. Ведь когда в реальной системе что-то принципиально не получается, начинаешь сомневаться даже в законе Ома.
Но все трудности были преодолены. Судно сдали госкомиссии, пошли на серию.
После этого почти все ЦКБ (см. фото) захотели иметь автоматизированные электростанции. Одно ЦКБ проектировало корабль с носовой аппарелью для десантирования танков (1171), другое – вертолётоносец (1123), третье – ракетный крейсер, четвёртое – серию новых сухогрузов, Начались работы по первому атомному ледоколу («Ленин») и т.д.
На предприятиях ЭРА начали создавать специальные участки по настройке систем автоматического управления электростанциями. Пришлось ездить по ЦКБ и электромонтажным цехам с лекциями по устройству и принципам работы, по проектированию и настройке систем. Много времени было, в частности, потрачено на обучение специалистов ЦКБ «Луч», специально выделенное для проектирование систем автоматического управления электростанциями.
Группы мастеров предприятий ЭРА на Николаевском и Херсонском судостроительных заводах, обучавшися методам настройки разработанных мной систем автоматизации судовых электростанций.
Впоследствие на базе Луча, предприятия п/я 200 и ЦКБ-57 организовали ЦНИИ «Аврора» с задачей обеспечения системами автоматизации всех технических средств кораблей и судов.
2.23. Разработка системы синхронного и синфазного вращения автономных генераторных агрегатов
Изучая параллельную работу машин переменного тока, я часто задумывался – какая сила заставляет лампы синхронизации останавливаться в процессе «мигания». Такое состояние получило даже название «зависание». В конце концов, я понял, что причина в токе, текущем по самим лампам синхроноскопов. Хотя токи через лампы составляют всего доли процентов от мощности автономно работающих машин, но они же идут по статорам генераторов, а значит создают синхронизирующие моменты. В условиях практического отсутствия возмущений этого достаточно, чтобы удерживать генераторы в состоянии синхронного вращения. Естественно, что сразу за этим открытием пришла мысль об искусственном усилении синхронизирующего момента. Но на генераторы здесь воздействовать нечем. Значит надо воздействовать на первичные двигатели, в данном случае на приводные двигатели постоянного тока. Надо создать датчик разности не только частот, но и углов, и их сигналы подать на возбуждение хотя бы одного двигателя. Так я и сделал. Разработал и изготовил преобразователь угла между векторами напряжений, собрал схему реверсивного усилителя, сложил сигналы по разности частот и по углу. И всё получилось! Развожу частоты машин герц на 5, получаю частое мигание ламп синхронизации. Включаю систему. Частоты вращения генераторов начинают сближаться, период загорания ламп увеличивается, увеличивается и становится близким к нулю. Свечение ламп синхронизации всё уменьшается и уменьшается. Наконец лампы погасают и уже не вспыхивают снова. Это значит, что машины вошли в синхронизм исключительно за счёт воздействия на первичные двигатели генераторов. Ради таких мгновений стоит жить! Это невообразимое счастье!
Но потом наступила пора разочарований. Принцип синхронного и синфазного вращения заработал, но небольшое возмущение в виде включения нагрузки одного генератора выводила машины из устойчивого равновесия. Происходили «провороты» синхронных генераторов относительно друг друга и только по истечении нескольких секунд равновесие, то есть синхронное вращение, восстанавливалось.
Читать дальше
Конец ознакомительного отрывка
Купить книгу